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S1 Introduction

S1.1 Operative definition of readily observable fusion as used in this article

Here we derive estimates for deuterium-deuterium (D-D) fusion rates corresponding to experimental observ-
ables that are macroscopically and uncontroversially detectable. Such experimental observables can include
the emission of neutrons and charged particles or the production of thermal energy that far exceeds the
chemical potential energy available in the system.

In terms of neutron emission, Jones et al. 1989 [1] report an observed fusion rate of 10-23 s–1 based on neutron
detection of (4.1 ± 0.8) × 10-3 counts s–1 (foreground counts minus background counts) at a neutron detection
efficiency of (1.0 ± 0.3)% for a 3 g TiD2 sample comprising about 4×1022 Ti atoms and about the same
number of D pairs. As suggested in the first footnote of the main text, a somewhat higher fusion rate of
10-20 s–1 would be readily detectable.

More generally speaking, we considered 100 mW to be a power level that is readily measurable. For instance,
the release of 100 mW in a 3 g metal sample in ambient air at 25°C leads to a temperature increase of about
20°C. Translating to nanoscopic units: 100 mW = 100 mJ s–1 = 6.2×1011 MeV s–1. For D-D fusion, 23.8
MeV of energy is released per reaction (considering ground state helium as a product), therefore the above
corresponds to 2.6×1010 fusion reactions per second. A 3 g TiD2 sample comprising about 4 × 1022 Ti
atoms and approximately the same number of D pairs, then 100 mW of observed power release corresponds
to a D-D fusion rate of about 10-12 s–1 per D pair.

The above considerations suggest that D-D fusion rates in the range between 10-23 s–1 to 10-12 s–1 and
higher can be considered readily observable—subject to experimental details and specific reaction products.
Comparing this range with the spontaneous fusion rate in D2 gas (~10–64 s–1 per deuteron pair at the
molecular distance of 74 pm, as estimated by Koonin and Nauenberg 1989 [2]) sets a target for fusion rate
enhancement of 40-50 orders of magnitude.

S1.2 Nomenclature when referring to deuterium-deuterium fusion

The nomenclature for deuterons differs across scientific communities and across different framings of the
fusion problem.

In nuclear physics, it is customary to refer to a deuterium nucleus as d and to a deuteron-deuteron fusion
reaction as d+d. Here, the occurrence of collisions with accelerated deuterons is typically implied. The
expression d+d is also sometimes used to refer to a 2+2 cluster configuration of nucleons in an atomic
nucleus (see different states of the 4He nucleus, as discussed in detail in section S5 and specifically in S6.2).
Other cluster configurations include the 3+1 configuration of nucleons, which serves as a precursor to what
we refer to as 3+1 fusion. The phrase 3+1 fusion points to deuteron-deuteron fusion that results in either
a triton (3) and a proton (1), or a 3He nucleus (3) and a neutron (1). It does not include the variant of
deuterium-deuterium fusion that results in a 4He nucleus. The latter is of considerable interest throughout
this document. For an explicit discussion of branching ratios, see S5.15.

In chemistry and materials science, deuterium atoms are referred to as D, which form D2 molecules in the
gas phase.

In quantum dynamics, a deuteron pair such as in the case of a deuterium molecule can be viewed as a single
quantum system with a specific energetic state associated with it (at the atomic and at the nuclear level).
Such a system can be referred to as |D2⟩.
In this article, we use the d terminology, when referring to bare nuclei such as in a collision framing. We refer
to D, when describing a deuterium atom and DD when referring to a pair of deuterium atoms (which can
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be in the form of a molecule D2). We use |D2⟩ terminology, when a quantum dynamics framing is explicitly
adopted and to be highlighted. In the most general sense, we refer to deuterium-deuterium fusion as D-D
fusion, a phrase that encompasses all conceivable framings of the process.

S1.3 Earlier reports of energetic particle emission from metal-hydrogen systems
at low energies

A number of articles report observations of energetic particles emitted from metal-hydrogen systems stimu-
lated at energies far below those typically associated with the initiation of nuclear reactions.

A selection of such articles and a brief summary of their reported observations are given below:

In Chambers et al. 1990 [3], the authors report the observation of charged particles with energies ~28 MeV
from Pd foils that were bombarded with deuterium ions at energies <1.5 keV.

In Takahashi et al. 1990 [4], the authors report the observation of neutron emission in the 3-7 MeV range
from electrochemically loaded PdD samples stimulated by electric current pulses.

In Menlove et al. 1990 [5] the authors observed repeated bursts of neutron emission using high-efficiency
neutron detectors in various forms of Pd and Ti metal in pressurized D2 gas cells and D2O electrolysis cells.

In Chambers et al. 1991 [6], the authors report the observation of ~5 MeV charged particles from the
bombardment of Ti foils with deuterium ions at energies of 350-400 eV.

In Ziehm 2024 [7], the author reports the observation of 138 keV charged particles from the bombardment
of Pd foils with deuterium ions at energies <500 eV.
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S2 Atomic physics discussion and calculations

S2.1 General

A variety of approaches for performing fusion rate calculations based on a two-body tunneling model are
provided by multiple authors [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Central to all these approaches of
fusion rate calculations is the tunneling factor T that represents the probability of two fusing nuclei reaching
the range of strong force attraction (fm range). T is also referred to as the barrier penetration factor.

The tunneling factor T(d,Ue) depends on the fusion reactants’ proximity d as well as the screening potential
in their vicinity Ue (see Figure 2 of the main text). The defining difference between the received approaches is
the choice of interatomic potential V, and to a lesser but still significant extent the choice of nuclear potential.
The interatomic potential can be approached as a numerical potential [2, 21] or as a parameterized potential
[22, 23] for numerical evaluation of the integral that determines T. Analytical expressions of the integral that
serve as approximations are given by some authors [19, 22, 20].

The tunneling factor T can be multiplied by a frequency f—which can be interpreted as the number of
attempted fusion events per unit time—to obtain a fusion rate [24]. The fusion rate obtained in this manner
must be subsequently corrected for geometric and nuclear considerations specific to the fusion reaction under
consideration (e.g., p+d, d+d, d+t). This latter correction is embedded in the so-called S-factor and must be
extrapolated from experimental fusion rate data [2, 25, 26]. However, in conventional beam experiments, no
fusion products are observed—within reasonable time frames—at projectile energies below 1 keV. Accordingly,
values of the S-factor at low energies are extrapolated from high energy data and therefore open to debate
[27].

All constants can be folded into a single pre-factor A that is a physical correction to the bare tunneling
probability T. When considering the effects of changes in proximity and screening—from an atomic physics
perspective, as is the focus of this section—only the factor T(d,Ue) is affected. Accordingly, the discussion
here focuses on relative changes of T as a function of proximity and screening, and refers to external literature
for detailed discussions of pre-factors such as the most appropriate value of the S-factor.

We provide more details on the calculation of T(d,Ue) and corresponding fusion rates in S6.3 (some of
the calculations in that section are based on the WKB approximation approach and some are based on
the numerical integration of wave functions introduced in section S6.1); and we provide a GitHub-hosted
Python Notebook to showcase the essential steps in these calculations on https://github.com/project-
ida/nuclear-reactions

S2.2 Deuteron proximity

Figure 2c of the main text shows the scaling of fusion rates as a function of deuteron proximity. We provide
more details on the calculation of fusion rates as a function of deuteron proximity in a GitHub-hosted Python
Notebook on https://github.com/project-ida/nuclear-reactions

S2.3 Electron screening

In a first approximation, electron screening of nuclei can be expressed as a correction factor (e–r/a) applied
to the Coulomb potential (V(r)), where a is the screening length [28, 29, 30]. The screening length in turn
consists of a constant multiplied by n–1/6, where n is the free electron density of the metal. For palladium,
n is approximately 3.15 Å−3 [24]. The resulting screened Coulomb potential is now expressed as:
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𝑉 (𝑟) = 𝑍1𝑍2 𝑞2
𝑒

𝑟 𝑒 −𝑟
𝑎 (1)

This approach requires the assumption that the free electron density of the metal is treated as a Fermi gas
[31]. Application of this approach to a hypothetical system consisting of a D2 molecule within a palladium
vacancy results in the contraction of interatomic distance from 74 pm to 57 pm [32]. The screening length,
a, is typically much smaller than the interatomic distance, r. Accordingly, the correction factor can be
simplified to a subtraction by a constant Ue where Ue = e2/a:

𝑉 (𝑟) = 𝑍1𝑍2 𝑞2
𝑒

𝑟 − 𝑈𝑒 (2)

Other considerations—such as the impact of positive ions on the screening potential as well as dynamic
effects—can be introduced to the Coulomb potential as additional corrections [33]. For the purpose of this
discussion, they will be considered negligible and fusion rates will be considered through the context of a
constant screening potential Ue, as introduced above.

A more detailed expression for the screening potential is given in Czerski et al. 2016 [34]:

𝑈𝑒 = 𝑒2𝑘𝑇 𝐹 = 2𝑒3

ℏ𝜋1/3 (3𝜋𝑛)1/6√
𝑚∗ (3)

where kTF is the Thomas-Fermi wave number, 𝑛 the electron density, and m* the effective electron mass. In
first approximation, the effective electron mass is the electron rest mass me. However, in some solid-state
environments, the effective electron rest mass is higher due to local electronic band structure changes that
result from specific geometries [35, 36, 37, 38].

The two electrons of a gas phase hydrogen (or deuterium) molecule correspond to a screening potential
Ue of ~25 eV [39]. Reported theoretical Ue values range from 50 to 150 eV for different metals, with Li
at the lower range and Pd at the upper range (see Figure S1 and [29]). The impact of screening energies
across this range on calculated fusion rates is shown in Figure 2c of the main text. While theoretically
predicted screening energies have been calculated for a variety of metals, it should be noted that screening
energies derived from experimental data (based on observed fusion rates) are higher than predicted values
[40]. Experiments to determine screening energies have been carried out by multiple groups [41, 42, 43] and
typically involve low-energy deuteron bombardment of different metal targets with concurrent measurement
of resulting nuclear byproducts (e.g., neutrons and charged particles). For the same materials, where the
theoretical screening energy range is given as 50 to 150 eV, the experimental screening energy range reported
is 150 to 300 eV (Figure S1) [29, 44] and beyond [36]. In other words, the experimentally observed fusion
rates are substantially higher than expected if one were to only consider proximity and screening within
the Gamow model. The typical approach in the literature is to parameterize such discrepancies and include
them in the phenomenological correction factor A without understanding all aspects of them causally.

Theoretical models for screening typically assume effects due to free electrons, which can begin to account
for the large screening observed in low-energy ion beam experiments. The screening energies predicted from
such models are substantial for relative deuteron kinetic energy in excess of 1 keV, but is much smaller at
zero relative energy [43]. Note that the (1𝑠)2 electron orbitals, which are relevant to two deuterons in close
proximity, are unlikely candidates for acting as free electrons.

It may be that an alternate mechanism is relevant in this context. A deuteron pair (e.g., in the form of a
dideuterium complex, see section S6.21) in proximity to a Pd atom can be imagined to undergo more complex
dynamics, where both of the deuterons tunnel into the Pd electron orbitals before tunneling through the
Coulomb barrier between them. In this kind of scheme, there is the possibility of screening due to bound

6



electrons at much higher electron density (and therefore stronger screening). It would be possible to model
this kind of screening with a special purpose quantum chemistry code that is constructed for or adapted to
the problem. This would represent another mechanism for enhanced screening—however, this conjecture is
yet to be explored in more detail.

Figure S1: Reported experimental (orange) and theoretical (teal) screening energy values. Reproduced with permission from
Huke et al. 2008 [29].

S2.4 Time-dependent deuteron proximity and electron screening

The discussions above on deuteron proximity and electron screening assume that the system is effectively
static. However, dynamic effects and associated temporary increases of proximity and local electron density
may affect fusion rates. A key to that argument is the recognition that fusion reactions are expected to take
place within a timescale of ≪1 fs whereas electron oscillations take place at a timescale of ≫1 fs. Accordingly,
even a short extremum in position and electron density would be effectively permanent from the perspective
of two fusing nuclei. In other words, such dynamics would be adiabatic in relation to fusion.

Instead of considering the tunneling probability at a single proximity between two nuclei, it has been sug-
gested that integration across all the occurring proximities as nuclei fluctuate is more appropriate [45]. This
approach exhibits parallels with the standard practice in thermonuclear fusion of integrating across the full
distribution of expected velocities rather than a single velocity (e.g., a thermal energy spectrum). Sub-
sequent consideration must be given to the magnitude and extent of fluctuations that can be reasonably
expected for deuterons in a solid-state material. In a first approximation, fluctuations on the order of 0.1 ×
the Bohr radius (~5 pm for D2) are conceivable, which would result in an increase in the static D-D fusion
rate of ~8 orders of magnitude [45]. Some authors have suggested that such dynamics—and the lack of
their consideration—are a primary factor in the discrepancy between theoretical and experimental screening
energies [42].
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S3 Nuclear physics discussion and calculations

S3.1 General

The concept of resonance applies both to observable amplitudes in classical systems and to probability
amplitudes in quantum systems. In a quantum tunneling problem (such as in the Gamow model), the
probability amplitude beyond the potential barrier increases when the frequency of the incoming wave
(e.g., the energy of an incoming deuteron) matches an intrinsic mode of a nucleus that can result from the
interaction. This is illustrated in general terms in Figure 3b of the main text, where an incident nucleus
with energy denoted “Relative energy” is shown on the right and the intrinsic energy levels of the resulting
nuclear structure (referred to as compound nucleus) are shown in the center. On the left, cross sections
(corresponding to tunneling probabilities) are shown as a function of energy. Peaks in tunneling probabilities
are seen for incident projectile energies that match the intrinsic energy levels of the compound nucleus. Such
peaks are associated with the concept of resonance.

Whereas Figure 3b is illustrative, Figure 3a shows actual cross sections for common fusion reactions obtained
from experimental data. In the given energy range above 5 keV, the d+d fusion reaction exhibits no reso-
nance peak. The d+t fusion reaction exhibits a broad resonance peak centered around 90 keV. The p+11B
fusion reaction exhibits narrower resonance peaks, for instance a particularly narrow one near 150 keV. The
theoretical explanation and prediction of such resonance peaks is the subject of ongoing research in nuclear
physics. As alluded to above, the peaks are ultimately a function of the nuclear structures that can form
from the interactions of an incoming nucleus and a target nucleus (except if scattering is dominant, as is the
case in some configurations). In the d+d case, the resulting structure comprises a four-nucleon system, in
the d+t case a five-nucleon system, and in the p+11B case, a twelve-nucleon system.

S3.2 Predicting and measuring nuclear resonances

Nuclear resonances have traditionally been determined phenomenologically, based on scattering experiments.
Alongside such experimental efforts, models have been developed. The models were initially heavily reliant
on experimental data but are increasingly based on first-principles approaches.

First-principles modeling of nuclear reactions draws on nuclear structure models, which in turn rely on
appropriate nucleon-nucleon interaction models. Such models have been developed based on experimental
data that allow for inferences about sizes and shapes of nuclei, energy levels and binding energies, scattering
behavior, nuclear reactions and resonances. The top-down deconstruction of phenomenological data then
informs the development of bottom-up theoretical models. These models in turn can be used for predictions of
new observations in experimentally inaccessible regimes. In this process of deconstruction and reconstruction,
critical assumptions need to be made as to what aspects to include in models and what reductions can be
justified in order to keep the resulting models mathematically and computationally tractable.

In first approximation toward the development of nuclear models and related intuition, nuclear excited
states that cause resonances can be thought of as vibrational modes of nuclei: nuclei can “quiver, ring or
even breathe” as Bertsch describes multi-nucleon systems [46]. The modes are caused by nucleon-nucleon
interactions and—to a lesser degree—by Coulomb interactions between the positively charged nucleons (i.e.,
protons). Moreover, nucleons can form molecule-like clusters which further impact the vibrational modes and
thus the resulting excited states and resonances (see S5.4 for more details). Specifically, the 4He compound
nucleus that results from d+d fusion is expected to be able to exist in several different 2+2 and 3+1 cluster
configurations (see S6.2). Instabilities in the excited states of nuclei lead to different reaction products
(decay channels) and angular distributions of reaction products, which can be experimentally measured. For
instance, the 20.21 MeV state of 4He is believed to have a 3+1 structure, where the individual nucleon can
be either a proton or a neutron that gets emitted during decay [47].
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Nuclear excited states are typically short-lived and excitation occurs in the context of nuclear reactions.
Incoming projectiles can transfer energy as well as mass (additional nucleons) to the target system. A light
nuclear particle (e.g., a photon, neutron, or deuteron) can brush over a target nucleus as a particle wave.
If the projectile energy and structure resonate with the target nucleus, nuclear reactions such as absorption
can occur rather than elastic scattering. Such absorption would manifest as resonance peaks in cross section
diagrams. This is, in essence, the system that needs to be modeled to predict nuclear resonances.

The underlying nucleon-nucleon interaction—also known as the nuclear force or strong force—exhibits a
number of features that make it particularly difficult to model: it exhibits three-nucleon effects in addition
to two-nucleon effects; it can saturate based on the number of affected nucleons; it is short-range and strongly
attractive at <2 fm, yet strongly repulsive at <1 fm; and it is not organized around a center as in the case
of electrons around a nucleus.

A central question has been whether nucleon-nucleon interactions could only be explained based on even more
fundamental quantum chromodynamics (QCD) models that consider detailed interactions between quarks
(the constituents of nucleons),or whether they can be simplified and parameterized to remain at the level of
nucleons [48]. In recent years, a wide consensus emerged around chiral effective field theory, which provides
models of the nucleon-nucleon interaction that assume that the interaction is mediated by the exchange of
virtual mesons, analogous to how the electromagnetic interaction at the atomic scale can be understood
as being mediated by the exchange of virtual photons [49]. This approach does exhibit the advantage of
representing nucleon-nucleon interactions comparatively accurately at the nucleon level without requiring
explicit QCD treatment.

A basic nuclear structure model is the nuclear shell model. The shell model emerges from solving the
Schrödinger equation in a mean field nuclear potential such as the Woods-Saxon potential. In this context,
“mean field potential” means a potential, where all nucleons are assumed to be equally affected by a mean
nucleon-nucleon interaction. As can be seen from the listing of characteristics of the nucleon-nucleon interac-
tion above, this assumption will likely leave out some dynamics among nucleons. Nevertheless, this approach
leads to a comparatively simple quantum mechanical model—not unlike the harmonic oscillator model for
excited states in atoms—that can be solved and that leads to a range of nuclear excited states. Over time, the
nuclear shell model evolved to make better use of additional insights gained about nucleon-nucleon interac-
tions. A recent first-principles variant of the shell model is the so-called no-core shell model (NCSM), which
includes an explicit treatment of three-nucleon interactions [50]. This allows for the construction of higher
level nuclear structure models on the basis of chiral effective field theory. Overviews of recent first-principles
unification efforts in that direction have been given by Bacca [51] and Quaglioni [52].

The discussion above centered on models for predicting nuclear structure, not nuclear reactions. A reasonable
assumption would be that nuclear structure models and nuclear reaction models are closely related. This
assumption does—perhaps surprisingly—not hold true in practice. Canonically, nuclear reaction models
have been constructed not from first principles but from phenomenological observations and were dependent
on experimental input. Meissner summarizes the process of predicting fusion cross sections [53]:

”typically, scientists perform experiments at the lowest energy at which fusion reactions can
be observed—from thousands down to hundreds of kiloelectronvolts—and then make theoretical
extrapolations to lower energies of interest. However, the resulting estimated low-energy data
may be unreliable because nucleon dynamics are disregarded in those calculations.”

A common method for such extrapolations is the phenomenological R-matrix method [54, 55], which provides
a framework for fitting experimental data and for deriving parameterized cross section estimates. However,
even this process is not purely deterministic and requires some judgment, and in some cases “arbitrary”
parameter choices, on the side of the researcher [56]. At the heart of the R-matrix method is a separation
of the configuration space into an outer region, where short-range forces are ignored and an inner region,
which is considered confined. This approach allows for the calculation of both scattering states (outer
region) and bound states (inner region). The R-matrix method has been evolved into a variant known as
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the computational R-matrix method, which is attributed the advantage “that narrow resonances which can
escape a purely numerical treatment are easily studied” [56]. In either case, once an R-matrix is calculated for
a given nuclear system, then the so-called S-matrix (scattering matrix) can be derived from it. The S-matrix
relates initial states to final states and some of its poles are indicative of resonances (and others of bound
states). Many of the cross section plots for fusion reactions, as shown in an exemplary manner in Figure
3a and accessible through nuclear databases, are determined this way—some relying more on experimental
data and others more on computational estimates (and it is not always explicitly stated which is which).

The concept of the S-matrix was first introduced by Wheeler (1937) [57] in the context of developing the
Resonating Group Method (RGM). The RGM represents early efforts to link nuclear reaction properties
to nuclear structure properties explicitly and is still used today. Originally devised for describing resonant
transfer of groups of electrons in scattering processes, the approach was later extended to also apply to
groups of nucleons in scattering processes [58]. While the original RGM approach does not consider the
structure of nuclei in as much detail as most of the nuclear structure models discussed above, it does consider
different clusters of nucleons and the interactions among such clusters. Recent efforts seek to integrate RGM
approaches to nuclear reaction modeling and advanced shell model approaches to nuclear structure modeling
such as NCSM (see Quaglioni et al. 2012 [59] for a discussion of such efforts). Since NCSM already represents
an integration between nucleon-nucleon interaction models and nuclear structure models, such efforts promise
to provide a unified picture connecting nucleon interactions to nuclear structure theory as well as to nuclear
reaction theory. Advanced models such as NCSM will be necessary to predict nuclear resonances rather than
experimentally detecting them.

Returning to the concrete case of the d+d reaction, for which fusion rate discrepancies between experimen-
tal data and theoretical predictions exist, Czerski et al. ground their proposal for a new resonance near a
hypothetical 23.85 MeV excited state of the 4He compound nucleus based on RGM calculations [34]. Specif-
ically, they refer to Kanada et al. [60] who suggest that a resonance “very close to the threshold of the
d+d channel” may exist [61]. At the same time, the authors imply—like others [47]—that the four-nucleon
system is complicated and requires certain assumptions to make such calculations. More research is needed
to assert or reject theoretical predictions of proposed near-threshold resonances in the 4He system.

All nuclear structure modeling approaches introduced above have a tradeoff between theoretical comprehen-
siveness and computational tractability. This compromise is expressed by Quaglioni—an expert in NCSM
techniques—as follows [53]: “Our model can often contain billions of terms. While more terms improve the
accuracy of the model, they also make solving the Schrödinger equation more difficult.” Consequently, “these
results cannot be considered conclusive until more accurate calculations using a complete nuclear interac-
tion […] are performed.” Similarly, Hassid comments on nuclear DFT approaches [62]: “Density functional
theory (DFT) is unique in providing a global theory of nuclei. However, it can miss important correlations
beyond the mean field.” Accordingly, nuclear reaction and resonance prediction is extremely sensitive to
small changes in corresponding models. Assumptions made during model development can result in major
differences in predicted outcomes. Quaglioni emphasizes that predicted resonances are “extremely sensitive
to higher-order effects in the nuclear interaction, such as three-nucleon force (not yet included in the cal-
culation) and missing isospin-breaking effects in the integration kernels.” [53] While nuclear resonances are
still explored computationally [63, 64], the manifestation of the challenges above is that nuclear resonances
continue to be primarily confirmed through experiment.

S3.3 Impact on fusion rates of a hypothetical d+d resonance at 23.85 MeV

In Figure S2, we follow Czerski and co-workers [35, 36] who overlaid d+d fusion rate calculations at different
screening energies with a hypothetical resonance centered near 23.85 MeV. Following these authors, the
impact of the hypothesized resonance on the cross section is represented by a Breit-Wigner distribution of
the form:
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𝜎𝑟𝑒𝑠(𝐸𝑐𝑚) = 𝜋
𝑘2

Γ𝑑Γ𝑝
(𝐸𝑐𝑚 − 𝐸𝑅)2 + 1

4 Γ2 (4)

where k is the Thomas-Fermi wave number, Γd is the partial deuteron width, Γp is the partial proton width,
Ecm is the relative center-of-mass energy between the deuterons, ER is the resonance energy, and Γ is the
resonance width.

Note that with its dependence on k such a resonance—although originating from nuclear dynamics—would
vary as a result of local lattice conditions. Specifically, Figure S2 illustrates the impact of a nuclear resonance
with ER = 1 eV and Γ = 0.5 eV on a d+d fusion reaction cross section. If such a resonance can indeed be
shown to exist, then the precise parameters of the distribution that represent the impact of the resonance
(such as a scaling factor) are best determined experimentally.

We provide a GitHub-hosted Python Notebook to showcase the essential steps in the calculations that
produce the plots in Figure S2 on https://github.com/project-ida/nuclear-reactions

Figure S2: d+d fusion rate estimates based on original work by Czerski and co-workers [35, 34] assuming: i) 110 eV with no
d+d resonance; ii) 110 eV with a narrow d+d resonance centered near 23.85 MeV; iii) 200 eV with no d+d resonance; iv) 200
eV with a d+d resonance centered near 23.85 MeV. Note that the energy on the x-axis is shown in the centre of mass frame.
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S4 Quantum dynamics of nuclear fusion in condensed matter
(overview)

Nuclear fusion can be modeled in first approximation as a two-level system (TLS) undergoing a spontaneous
transition from a (highly) metastable excited state to the ground state at a rate corresponding to what we
can refer to as the fusion rate. In other words, an excited TLS (i.e., the fusion reactants) relaxes to its
ground state (i.e., the fusion products) [65].

If the number of final states is large enough to be represented as a continuum of states, the so-called Golden
Rule can be applied to extract a rate, as shown below [66]. That is indeed the case in the conventional
thermonuclear fusion picture, where the possible final states represent a continuum (fusion products as
particles with momentum in all directions of space). The equivalence of modeling tunneling via the Wentzel–
Kramers–Brillouin (WKB) approximation, i.e., the Gamow factor approach (as discussed in section S2 and
shown in more detail in section S6.3) and modeling spontaneous emission via the Golden Rule (as shown
here) is explicated by Raju [67].

The simplest Hamiltonian representation of a TLS (HTLS) that relaxes from an initial excited state (i) to
its final ground state (f ) is

𝐻𝑇 𝐿𝑆 = [ 𝑖 𝑉
𝑉 ∗ 𝑓 ] (5)

where 𝑉 represents the coupling between the states i and f. A corresponding diagram is shown in Figure S3.
The described treatment of the D-D system as a two-level quantum system is discussed in greater depth by
Hagelstein [68, 69] and in section S5.1.

Figure S3: Essential features of a two-level system (TLS): An excited state (+) is coupled to a ground state (-) whereby the
coupling is represented by V. A perimeter encompasses all interacting elements of the quantum system, which in this case is
only the TLS itself.

Now consider the 4He + 𝛾 channel of D-D fusion: the photon can be emitted in many angular configurations
effectively making the number of final states infinite and leading to irreversible dynamics [70] (practically
zero probability of reabsorption). In this case, the Hamiltonian matrix more accurately is
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𝐻𝐺𝑜𝑙𝑑𝑒𝑛𝑅𝑢𝑙𝑒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖 𝑉 𝑉 𝑉 𝑉 𝑉 …
𝑉 𝑓1 0 0 0 0 …
𝑉 0 𝑓2 0 0 0 …
𝑉 0 0 𝑓3 0 0 …
𝑉 0 0 0 𝑓4 0 …
𝑉 0 0 0 0 𝑓5 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

The transition rate (Γ), per the Golden Rule, from an initial state i to a continuum of final states f is [66]

Γ𝑖→𝑓 = 2𝜋
ℏ |⟨𝑓|𝐻|𝑖⟩|2 (7)

With the latter term taking on the value of

⟨𝑓|𝐻|𝑖⟩ = 𝑉 ∝ 𝑒−𝐺 (8)

where the transition matrix element 𝑉 between i and f is represented by the inverse exponential of the
Gamow factor (G), which represents the penetration probability. The small value of V represents the low
probability of the nuclear transition. This treatment results in an equivalency between the transition rate
and the fusion rate for a two-nucleus system with their characteristic exponential probability distribution
(Figure S4)

Γ𝑖→𝑓 ∝ 𝑒−2𝐺 (9)

Γi→f represents a decay channel that is always available at the given rate in a two-nucleus system.

However, it is not necessarily the only decay channel. If a coupling to a resonant or near-resonant quantum
system exists, additional dynamics must be considered. Specifically, in the case of a resonance with a receiver
system (sometimes referred to as an acceptor system), energy transfer can occur (see for instance the nuclear
quantum dynamics described in [71]).

This can give rise to complicated dynamics, including linear and nonlinear Rabi oscillations, where occupation
probability oscillates back and forth between donor and receiver systems. Generic examples of receiver
systems in this context include oscillators and additional TLSs.

To first approximation, the Rabi frequency, which characterizes the oscillation rate, depends on the coupling
strength and detuning between the two systems [72]. It can be expressed as:

ΩRabi = √|Ω0|2 + Δ2 (10)

Here, Ω0 represents the coupling strength, and Δ is the detuning parameter, defined as the difference in
transition frequencies between the two systems:

Δ = 𝜔system 1 − 𝜔system 2 (11)

When the two systems are in resonance (Δ = 0), the Rabi frequency reduces to the coupling strength Ω0,
resulting in maximum energy transfer between the states.
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Figure S4: A two-level system (TLS) with a continuum of final states: when a TLS can relax into a near-infinite number
of final states, the transition probability takes the form of a decaying exponential per the Golden Rule expression (Eq. 9).
Here, the near-infinite number of final states are represented by small differences in final state energies and in differences in the
angular orientation of resulting photon emission.

Bringing this back to the nuclear fusion context, if a fusion transition can be coupled to one or multiple
receiver nuclei (acceptor nuclei) with matching transitions, and if the transfer rate of that process is faster
than the spontaneous decay rate, then there is an alternative fusion pathway.

We will later see that Ω is a function of the fusion hindrance factor 𝑒−𝐺 but also of other variables that can
be used to increase that frequency.

For a TLS coupled to an oscillator, a so-called Rabi Hamiltonian can be used to describe the dynamics [73]:

𝐻𝑅𝑎𝑏𝑖 =
𝑡𝑙𝑠

⏞ℏ𝜔0𝜎𝑧 +
𝑜𝑠𝑐

⏞ℏ𝜔𝑎†𝑎 +
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

⏞⏞⏞⏞⏞𝑉 (𝑎† + 𝑎) 𝜎𝑥 (12)

Here ℏ𝜔0 is the transition energy in the TLS, ℏ𝜔 is the energy in the oscillator mode, and 𝑉 refers to the
interaction between them. 𝜎x, 𝜎z are Pauli matrices and a† and a are creation and annihilation operators.
A resonant oscillator would correspond to the case where 𝜔0 = 𝜔.
The time-evolution of such a resonant system yields an occupation probability that Rabi-oscillates between
the TLS and the oscillator (see Figure S5). While the above implementation illustrates what a coherent D-D

14



Figure S5: A two-level system (TLS) coupled to a resonant oscillator that allows for direct energy exchange between the two,
resulting in Rabi oscillations between states |+, 0⟩ and |−, 1⟩. The simulation is based on the quantum dynamics Python library
QuTiP and available at: https://github.com/project-ida/two-state-quantum-systems/

fusion channel could look like, no oscillator can be practically implemented at this time that can readily
absorb the 23.85 MeV energy that would result from the |D2⟩ → |4He⟩ reaction.

However, a modified version of such a system can be implemented, where another TLS with a resonant
excited state (such as another nucleus) absorbs the released energy and where a non-resonant oscillator
mediates the transfer.

The dynamics of the general case with many such resonant TLSs can be described with a so-called Dicke
Hamiltonian:

𝐻𝐷𝑖𝑐𝑘𝑒 = ℏ𝜔0
𝑁

∑
𝑗=1

𝜎𝑗
𝑧 + ℏ𝜔𝑎†𝑎 + 𝑉 ∑

𝑗
𝜎𝑗

𝑥(𝑎 + 𝑎†) (13)

Here index j counts over N nuclei and N corresponding interaction terms with the shared oscillator mode.

Time evolution for the specific case of two resonant TLSs yields an occupation probability that Rabi oscillates,
but this time between donor TLS and receiver TLS where the oscillator merely mediates the transfer rather
than fully participating in it (Figure S6). In such a case of non-radiative transfer, the mediating oscillator
can facilitate the transfer of a large quantum of excitation (in our case 23.8 MeV) without ever having
to hold the entirety of that energy itself [74, 75, 76]. This is a critical point, since many readers may
intuitively assume that in such a context, the oscillator needs to be able to fully absorb the energy quanta
that are to be transferred. That is, however, not the case, as can be shown simply from time-evolving
corresponding versions of the well-known Dicke model (as demonstrated in the Python Notebooks hosted at
https://github.com/project-ida/two-state-quantum-systems/).

The coupling between nuclei in that case is indirect, i.e., via the mediating oscillator modes, whereas the
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coupling from each nucleus to the oscillator mode is direct. Examples of oscillators relevant in this case are
phonons and plasmons.

Figure S6: Two two-level systems (TLS) coupled to a shared oscillator mode with resonant TLS states: the coupled resonant
TLS allows for indirect energy exchange between the two TLSs via the shared oscillator mode, resulting in Rabi oscillations
between states |−, +, 1⟩ and |+, −, 1⟩. The simulation is based on the quantum dynamics Python library QuTiP and available
at: https://github.com/project-ida/two-state-quantum-systems/

Note that a key feature of such a Dicke model related transfer scheme is the acceleration of the transfer rate
as a function of the number of participating systems (see section S5.2).

When considering |D2⟩ as a donor system in such excitation transfer dynamics (a TLS in the excited state,
capable of undergoing a |D2⟩ → |4He⟩ transition with its 23.85 MeV transition energy), then a resonant
receiver system is needed as well as a shared oscillator mode that both systems are coupled to. A ground
state 4He nucleus offers a perfectly resonant excited state via the |4He⟩ → |D2⟩ transition. However, in this
case, the donor side |D2⟩ → |4He⟩ transition and the receiver side |4He⟩ → |D2⟩ transition would remain
within a closed system, e.g., |D2

4He⟩ turns into |4He D2⟩. Accordingly, the process would be difficult to be
observed for lack of clear reaction products—and it would also likely still be too slow to reach the observable
range (see section S5.3 for corresponding rate estimates based on concrete parameters).

A key reason for the comparatively slow rates, despite coherent dynamics, is the fact that the Coulomb
barrier, as a key hindrance to the involved transitions, comes into the rate equation twice per transfer: once
on the donor side |D2⟩ → |4He⟩ transition and once on the receiver side |4He⟩ → |D2⟩ transition.

This is not the case with many alternative receiver systems. In section S5.4, we will consider Pd nuclei as
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candidate receiver systems. Transfer to Pd on the receiver side instead of 4He is expected to result in faster
rates, since transitions from Pd ground states to excited states |Pd⟩ → |Pd*⟩ are less hindered than the
|4He⟩ → |D2⟩ transition. In that case, while there is an analogous transition hindrance factor that we will
refer to as the 𝑂-value (section S5.4), this hindrance factor is many orders of magnitude smaller compared
to the impact of the deuterium-deuterium Coulomb barrier on the receiver side (see section S5.5 and Figure
S24).

Considering a different nuclear species as receiver systems raises the question of how to achieve resonance
with the donor transition. While it is in principle conceivable that a Pd nucleus exhibits a suitable excited
state precisely near the resonance condition of 23,848,109 eV, such a coincidence would be unlikely. However,
as will be discussed in section S5.7 and subsequent sections, combinations of multiple lower-energy (and
longer-lived) Pd excited states result in an extremely high density of states near 23.85 MeV and above,
allowing for the resonance condition to be met.

In practice, other issues need to be considered such as the effect of high-power transients of the oscillatory
modes of interest, which lead to a temporary increase in coupling strengths (due to the dependence of the
coupling strengths on the dissipated power in the oscillator modes, see section S5.1). High-power transients
can arise from shocks deliberately applied to the lattice, e.g., through laser pulses, and also from internal
lattice dynamics, e.g., phase changes. The impact of such high-power transients on evolving excitation
transfer dynamics will be considered in section S5.6.

As for reaction products, working with a different nuclear species than 4He as receiver systems offers other
advantages with respect to observables. If the receiver nuclei were to disintegrate upon receipt of the
transferred excitation—thus turning the closed quantum system into an open one—the process becomes
observable. Many heavy nuclei can resonantly absorb energies near 23.85 MeV (and higher) and would
promptly decay via alpha, proton, or neutron emission upon receipt of such large quanta of excitation [77].
This final step at the end of a rather complex process of excitation transfer could then account for the
reported energetic particle emission from metal-hydrogen systems, such as those summarized in section S1.3.

An even more detailed treatment of the problem also recognizes that the density of states on the receiver
side gets very high, when allowing for energy exchange between the nuclear states and the oscillator modes
(section S5.10). In that case, there is not just a single discrete receiver state, as in the idealized example of
transfer from D2 donor systems to 4He receiver systems, but many possible states on the receiver side. This
in turn requires a Golden Rule treatment when undertaking rate calculations and a corresponding model.
We find that rates in such a model are particularly high and argue that such a model may be well suited to
connected with the kinds of experimental reports mentioned above. Energy exchange from excited nuclear
states with oscillator modes of the lattice—when there is a high density of states that nuclear systems can
traverse as they emit energy into phonon and plasmon modes—provides an intrinsic explanation for so-called
excess heat effects observed in metal-hydrogen systems. In such experiments, researchers have reported the
accumulation of heat far beyond the applied input energy and the chemical potential energy in the system.

The discussions in this section sought to provide a broad overview of nuclear excitation transfer dynamics.
A more detailed and comprehensive treatment with estimates for real systems is provided in section S5.
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S5 Quantum dynamics of nuclear fusion in condensed matter
(detailed treatment)

Section S4 laid out a basic conceptual overview of relevant dynamics. This section here will provide a
more detailed treatment that goes deeper into individual points raised. It will present arguments for how,
in specific kinds of metal-hydrogen systems, known quantum dynamical energy transfer mechanisms—in
combination with electron screening and molecule-like proximity of hydrogen isotopes—can result in greatly
accelerated fusion rates.

Some of the quantitative examples in this section are idealized and primarily pedagogical in nature, seeking
to help the reader appreciate different aspects of this complex problem. Other quantitative examples are
based on realistic assumptions, and we argue that the resulting fusion rate estimates in the observable
range align with reports of energetic particle production as well as excess heat production in metal-hydrogen
experiments such as the ones briefly discussed in S1.

In their development, these arguments have undergone many iterations—and we expect further refinement
and expansion in the future. Nevertheless, we are confident that the mechanisms laid out here, and their
combined effects in specific metal-hydrogen systems, represent a viable approach to engaging with experi-
mental reports productively. We propose that this approach makes solid-state fusion actionable not only
from an experimental perspective (such as with the ARPA-E program on low-energy nuclear reactions that
commenced in 2023 [78]—see section S5.16) but also from a theoretical and modeling perspective.

As we make more progress in developing and refining these arguments, we will provide updated versions of
this document (and subsections of it) via our group’s GitHub site at https://github.com/project-ida.
This includes links to evolving preprints as well as computational notebooks and a regularly updated list of
related published materials.

Nomenclature and visual language

This section will make use of figures that include schematic representations of atomic and nuclear structure.
We therefore adopt different visual languages to represent systems such as D2, 4He, APd, APd* (excited states
of Pd isotopes, as discussed in S5.4) and APd in different states compared to the atomic level representations
used in the main text. Figure S7 summarizes these visual representations at atomic and nuclear scales.

We will frequently refer to “transitions” in this document, and the usage of this word, along with related
notations, requires some elaboration. Depending on the context, “transition” may be used in a static
manner, referring to the energy level spacing in a two-level or multi-level system. For instance, the level
spacing between a palladium excited state (Pd∗) and a palladium ground state (Pd) represents a transition
in that sense of the word.

In such cases, we use the notation Pd∗/Pd to denote the upper and lower energetic state of the system. Since
𝐷2 is viewed as an excited state of 4He in this document, we often refer to the D2/4He transition in this way
(which is associated with the 23.85 MeV mass defect energy that defines the level spacing).

The other use of “transition” is a more dynamic one, referring to an actual state change rather than to the
static configuration of energy levels. For instance, the Pd∗/Pd transition can undergo a state change, when
an occupied excited state decays to the ground state. In this case, we use the notation Pd∗ → Pd to represent
this process, and we refer to it as a Pd∗ → Pd transition. The reverse of the latter is a Pd → Pd∗ transition,
in the case of an excitation instead of a deexcitation.

In most instances, the meaning of “transition” will be clear from the context. However, where ambiguity
might arise, we will explicitly refer to “two-level system” to indicate the static use of the term and “state
change” to indicate the dynamic use.
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Figure S7: Different visual representations at atomic and nuclear scales used in this document. The A in APd can be used
to refer to a specific Pd isotope whereas the use of the expression “APd” indicates that any of the (stable) Pd isotopes can be
considered here.
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S5.1 From a comprehensive Hamiltonian describing nuclei in a lattice to a nu-
clear Dicke model

The starting point for this exploration of nuclear quantum dynamics is a comprehensive Hamiltonian that
describes nuclei in a lattice as well as various oscillator modes that the nuclear states couple to (weakly).

This starting point is consistent with Terhune and Baldwin’s [79] perspective who in a 1965 Physical Review
Letter laid out a basic approach to the modeling of nuclear dynamics in a lattice with a single comprehen-
sive Hamiltonian that accounts for nuclei, lattice modes, radiation, and interactions. The need for such a
comprehensive Hamiltonian is motivated by them as follows:

“In a solid composed of N identical two-level nuclei in a perfect crystal lattice at a uniform and
low temperature, correlations in the internal motions of the radiators are more probable than in
the case of a, gas. [..] The usual assumption’ that each nucleus radiates independently of the
states of other nuclei in the system is incompatible with the coupling of the nuclei through the
common electromagnetic and phonon fields.”

The most generic form of the comprehensive Hamiltonian that Terhune and Baldwin provide is:

�̂� = �̂�𝑛𝑢𝑐𝑙𝑒𝑖 + �̂�𝑙𝑎𝑡𝑡𝑖𝑐𝑒 + �̂�𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + ̂𝑉𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (14)

A more specific form of the comprehensive Hamiltonian used here is:

�̂� = �̂�𝑛𝑢𝑐𝑙𝑒𝑖 + �̂�𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + �̂�𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 + �̂�𝑚𝑎𝑔𝑛𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑚𝑎𝑔𝑛𝑜𝑛𝑠 (15)

In this equation, there is a Hamiltonian to account for ground states and excited states of the nuclei in
the system; there are condensed matter Hamiltonians for phonons, plasmons and magnons; and there are
interaction terms that describe coupling between the nuclear states and the phonons, plasmons and magnons
in the system.

Since such a comprehensive Hamiltonian describes a multitude of dynamics and is essentially intractable,
it will be gradually simplified in this section with the goal of identifying key dynamics that under specific
circumstances yield observable effects. For the sake of simplicity, we will start by dropping the magnon terms.
The focus for calculations in this document will be on phonons, but extensions for plasmons are discussed
in section S6.27. The potential role of magnons will have to be explored in future work.

The nuclei can be represented as in Hagelstein 2024 [80]

�̂�𝑛𝑢𝑐𝑙𝑒𝑖 = ∑
𝑗,𝑘

(|Φ𝑗⟩𝑀𝑗𝑐2⟨Φ𝑗|)
𝑘

(16)

where the mass energies 𝑀𝑗𝑐2 of the different nuclear states 𝑗 at the different sites 𝑘 in the lattice are written
in a multi-level system notation (in contrast to two-level system notation). Φ𝑗 represents nuclear states in
terms of internal degrees of freedom.

The focus here will be on phonons and plasmons whose Hamiltonians are of the form

�̂�𝑝ℎ𝑜𝑛𝑜𝑛𝑠 = ∑
k,𝜈

ℏ𝜔(𝑝ℎ𝑜𝑛𝑜𝑛𝑠)
k,𝜈 ̂𝑎†

k,𝜈 ̂𝑎k,𝜈 (17)
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�̂�𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 = ∑
k,𝜈

ℏ𝜔(𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠)
k,𝜈 ̂𝑏†

k,𝜈 ̂𝑏k,𝜈 (18)

where k is the wave vector of the phonon and plasmon modes, 𝜈 is describes which mode is considered, and
𝜔k,𝜈 is the frequency of the respective mode.

When considering both electric and magnetic interactions associated with oscillations of the nuclei when
vibrations occur, the interaction term can be expressed via a multi-level system formalism according to
[81, 82]

̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝ℎ𝑜𝑛𝑜𝑛𝑠 = − ∑
𝑗,𝑗′,𝑘

(|Φ𝑗⟩⟨Φ𝑗|d ⋅ Ê|Φ𝑗′⟩⟨Φ𝑗′ |)
𝑘

− ∑
𝑗,𝑗′,𝑘

(|Φ𝑗⟩⟨Φ𝑗|𝝁 ⋅ B̂|Φ𝑗′⟩⟨Φ𝑗′ |)
𝑘

(19)

where Ê is the electric field strength, B̂ is the magnetic field strength, d is the electric dipole operator, 𝝁 is
the magnetic dipole operator, and where 𝑗 and 𝑗′ are the nuclear states included, and 𝑘 indexes the sites in
space where the nuclei are positioned.

For simplicity, in this section, we will restrict ourselves to the case of electric dipole interactions. However,
the overall dynamics explored here are in principle agnostic to the type of coupling that is focused on and we
describe dynamics and provide rate estimates based on different couplings and different nuclear transitions
later in this text (section S5.3 and subsequent sections).

In terms of nomenclature, we use 𝑉 here to refer to a coupling generically and we use subscripts to refer to
specific couplings, e.g., 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐. Therefore, we can write here:

̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝ℎ𝑜𝑛𝑜𝑛𝑠 = ̂𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = − ∑
𝑗,𝑗′,𝑘

(|Φ𝑗⟩⟨Φ𝑗|d ⋅ Ê|Φ𝑗′⟩⟨Φ𝑗′ |)
𝑘

(20)

Electric coupling in this context can be thought of as follows:

Acceleration of an individual nucleus occurs because of the local oscillatory field in a classical picture accord-
ing to

𝑀𝑗
𝑑2

𝑑𝑡2 R𝑗 = 𝑍𝑗𝑒E𝑘 (21)

where R𝑗 is the center of mass position, 𝑍𝑗 is the nuclear charge, and e is the unit charge.

In the quantum version of the model, the position operator is expressed in terms of the different phonon
modes according to

R̂(𝑗, 𝑙) = R(𝑗, 𝑙) + ∑
k,𝜈

e(𝑗, k, 𝜈)√ ℏ
2𝑁𝑀𝑗𝜔k,𝜈

(𝑒𝑖k⋅R(𝑗,𝑙) ̂𝑎k,𝜈 + 𝑒−𝑖k⋅R(𝑗,𝑙) ̂𝑎†
k,𝜈) (22)

where l denotes the unit cell and where e(𝑗, k, 𝜈) is the phonon polarization vector ([83]). 𝑗 index the
positions of the nuclei, k is the phonon wave vector and 𝜈 indexes the phonon branch (e.g., acoustic, optical,
compressional and transverse).

A corresponding electric field operator can then be defined at a given nucleus position as a function of phonon
modes
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Ê(𝑗, 𝑙) = − ∑
k,𝜈

e(𝑗, k, 𝜈)√
𝑀𝑗ℏ𝜔3

k,𝜈
2𝑁𝑍2

𝑗 𝑒2 (𝑒𝑖k⋅R(𝑗,𝑙) ̂𝑎k,𝜈 + 𝑒−𝑖k⋅R(𝑗,𝑙) ̂𝑎†
k,𝜈) (23)

Focus on spatially uniform interaction

A first glance at the overall Hamiltonian draws attention to several critical aspects: the coupling energies
in the −d ⋅ E and −𝝁 ⋅ B interaction terms are comparatively small and the state transition energies in the
nuclear terms are comparatively large. As discussed in section 3 of the main text, the small coupling energies
have to do with the small sizes of nuclei, which limit their electric dipole moments.

Large transition energies in the MeV range are typical for nuclear state transitions and intrinsic to nuclear
physics. Oscillator transitions in turn are near an eV and less. Consequently, first-order processes (emission
or absorption of single phonons, plasmons, or magnons) are not expected to be important—which agrees
with basic intuition and experience because, due to the large mismatch, energy cannot be conserved in a
first-order exchange process. However, energy can be conserved in second-order processes and also in higher
order processes. The focus below will be on second-order oscillator-mediated excitation transfer processes.
Later on we will make heavy use of higher-order generalized excitation transfer processes (section S5.10).

Despite the relevance of excitation transfer and higher-order processes, dynamics can be expected to be
slow due to the weak coupling strengths between nuclear state transitions and condensed matter degrees of
freedom (e.g., phonons, plasmons, and magnons). However, Dicke enhancement [84] can compensate for this
and accelerate dynamics. Dicke enhancement is expected in many-body quantum systems interacting with
a uniform common oscillator. Originally applied to a coherently radiating gas, its relevance for accelerating
nuclear state transitions and nuclear reaction parameters was first described in 1965 [79] and 1990 [85],
respectively. In the context of excitation transfer, Dicke enhancement has been referred to as supertransfer
[86].

Since only Dicke-enhanced interactions can be expected to yield observable effects in the given systems, the
modeling focus will be reduced to such interactions. This results in a restricted Hamiltonian of the form

�̂� = ∑
𝑗,𝑘

(|Φ𝑗⟩𝑀𝑗𝑐2⟨Φ𝑗|)
𝑘

+ ℏ𝜔𝐴 ̂𝑎†
𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†

𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†
𝑃 ̂𝑎𝑃 − ∑

𝑗,𝑗′,𝑘
(|Φ𝑗⟩⟨Φ𝑗|d ⋅ Ê|Φ𝑗′⟩⟨Φ𝑗′ |)

𝑘
(24)

In this idealization, the different nuclear states interact with a single (uniform) acoustic phonon mode (𝐴),
with a single (uniform) optical phonon mode (𝑂), and with a single (uniform) plasmon mode (𝑃 ) via the
electric interaction d ⋅ Ê. The electric field operator is now uniform across all nuclei in the domain, and
simplifies to

Ê → − e𝐴√ 𝑀𝑗ℏ𝜔3
𝐴

2𝑁𝑍2
𝑗 𝑒2 ( ̂𝑎𝐴 + ̂𝑎†

𝐴) − e𝑂√ 𝑀𝑗ℏ𝜔3
𝑂

2𝑁𝑍2
𝑗 𝑒2 ( ̂𝑎𝑂 + ̂𝑎†

𝑂) − e𝑃 √𝑚𝑒ℏ𝜔3
𝑃

2𝑁𝑒𝑒2 ( ̂𝑎𝑃 + ̂𝑎†
𝑃 ) (25)

where e unit vectors account for the polarization and amplitude that are involved for a specific nucleus.

This model describes many multi-level nuclear systems (with large state transition energies) collectively
and uniformly interacting with three different condensed matter oscillators at low energy. As such, its
state transition and energy transfer dynamics are subject to cooperative Dicke enhancement similar to the
supertransfer collective excitation transfer dynamics described in [86].
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A remaining difference is that here we have multi-level systems and the typical Dicke model works with
two-level systems. We will next describe how the above Hamiltonian can be further simplified to correspond
to the generalized Dicke model.

Nuclei idealized as two-level systems

Although the model above is already much simpler compared to the starting point, a further idealization
will be helpful in understanding the associated coherent dynamics. If we replace the multi-level systems that
describe the nuclear states with simpler two-level systems, then we end up with an idealization that is more
amenable to analysis.

Considering a deuteron pair (such as in molecular D2), the different nuclear states are shown schematically in
Figure S8 (and also in Figure 3 of [87]). The allowed states include 1S, 5S, 3P, 1D, 5D, ... states, all of which
(including sub-levels) can be described in an multi-level model formalism. Note that half the states that one
may expect are missing because the generalized Pauli principle makes the construction of anti-symmetric
states impossible. A more detailed discussion of the relevant D2 states and their wave functions as well as
the relevant 4He states and their wave functions is presented in section S6.1. A brief review of known excited
states of 4He in the literature is provided in section S6.2.

In a two-level system description, as used below, this collection of states is replaced by a single (generic)
D2 molecule state as the excited state (highly clustered four-nucleon configuration) and an unexcited 4He
nucleus as the ground state (compact four-nucleon configuration) of a two-level system.

Figure S8: Molecular states and nuclear spin states of a D2 molecule versus a 4He nucleus. The D2 states are effectively
degenerate with rotational energies on the order of meV. Even parity states are indicated in blue, and odd parity states are in
red. Related 4He* excited states are shown in Figure S48 in section S6.2.

Pseudo-spin formalism for ensembles of nuclei

Two-level systems are conveniently modeled making use of Pauli matrices. Here, the pseudo-spin formalism
is employed so as to focus not just on a set number of two-level systems but on the collective behavior of an
extensive system of such entities (this formalism is a common mathematical tool to describe collections of
two-level systems and is named after spins even though in many cases there is no spin involved at all in the
problem).

For a single two-level system, a formalism based on a single pseudo-spin ̂s operator can be used according to
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ℏ
2 𝝈 = ̂s (26)

where 𝝈 is a vector made up of Pauli matrices

𝝈 = ̂i𝑥𝜎𝑥 + ̂i𝑦𝜎𝑦 + ̂i𝑧𝜎𝑧

= ̂i𝑥 ( 0 1
1 0 ) + ̂i𝑦 ( 0 −𝑖

𝑖 0 ) + ̂i𝑧 ( 1 0
0 −1 )

(27)

where ̂i are the Cartesian unit vectors. A single pseudo-spin operator is useful for modeling a single two-level
system. If there are many two-level systems, then it is convenient to work with bigger pseudo-spin operators
defined according to

Ŝ = ∑
𝑗

̂s𝑗 = ℏ
2 ∑

𝑗
𝝈𝑗 (28)

This aids in the analysis of models where cooperative enhancements occur, since the associated many-pseudo-
spin operators leads to cooperative factors naturally.

Generalized nuclear Dicke model

We can write the two-level idealization of the model above making use of pseudo-spin operators according
to

�̂� = ∑
𝑗

Δ𝑀𝑗𝑐2 𝑆(𝑗)
𝑧
ℏ + ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃 − ∑
𝑗

⟨Φ2|d ⋅ Ê|Φ1⟩𝑗(
𝑆(𝑗)

+
ℏ + 𝑆(𝑗)

−
ℏ ) (29)

where 𝑆(𝑗)
+ is a pseudo-spin raising operator and 𝑆(𝑗)

− is a pseudo-spin lowering operator and the nuclear
dipole matrix elements are assumed to be real. The model is now a Dicke model.

In this derivation, the focus was placed on electric coupling. However, the Hamiltonian can be written in
more general form and different interactions 𝑉 can be readily considered (as will be done in section S5.3 and
in subsequent sections):

�̂� = ∑
𝑗

Δ𝑀𝑗𝑐2 𝑆(𝑗)
𝑧
ℏ + ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

+ ∑
𝑗

𝑉 (𝐴)
𝑗 ( ̂𝑎†

𝐴 + ̂𝑎𝐴)(𝑆(𝑗)
+
ℏ + 𝑆(𝑗)

−
ℏ ) + ∑

𝑗
𝑉 (𝑂)

𝑗 ( ̂𝑎†
𝑂 + ̂𝑎𝑂)(𝑆(𝑗)

+
ℏ + 𝑆(𝑗)

−
ℏ ) + ∑

𝑗
𝑉 (𝑃)

𝑗 ( ̂𝑎†
𝑃 + ̂𝑎𝑃 )(𝑆(𝑗)

+
ℏ + 𝑆(𝑗)

−
ℏ )

(30)

Note that this Dicke model is similar to supertransfer models in the literature such as Eq. 1 in Lloyd and
Mohseni [86]

�̂� = − ∑
𝑗

ℏ𝜔
2 𝜎𝑗

𝑧 + ℏ𝜔𝑎†𝑎 + ∑
𝑗

ℏ𝛾𝜎𝑗
𝑥(𝑎 + 𝑎†) (31)
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S5.2 Excitation transfer dynamics between D2 and a resonant receiver nuclear
state

The above-described Dicke model is still complex, containing a multitude of possible dynamics, and it can be
applied to many different physical systems. Herein, we focus on resonant nuclear excitation transfer between
D2 molecules and 4He nuclei, which represent excited and ground states of an idealized two-level system
per the discussions in sections S5.1 and S6.1 (where molecular D2 is viewed as being an excited state of a
multi-body system where 4He is the associated ground state). This physical setup implies that the receiver
system (4He) is perfectly resonant with the donor system (D2).

To proceed this way, we consider two ensembles of nuclei 𝑎 and 𝑏 whereby ensemble 𝑎 denotes the group of
D2 nuclei in the coupled system (which can undergo the D2 → 4He transition) and 𝑏 denotes the group of
4He nuclei in the coupled system (which can undergo the 4He → D2 transition). Note that the collective
transition of group a occurs coherently together with the corresponding transition in group b—although
intermediate (sometimes referred to as virtual) states are involved, as will be discussed later in this section.

Our starting point is the generalized nuclear Dicke model (Eq. 30). Recall that the corresponding Hamilto-
nian, based on first-order coupling between the nuclei and the oscillator modes, is

�̂� = ∑
𝑗

Δ𝑀𝑗𝑐2 𝑆(𝑗)
𝑧
ℏ + ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

+ ∑
𝑗

𝑉 (𝐴)
𝑗 ( ̂𝑎†

𝐴 + ̂𝑎𝐴)(𝑆(𝑗)
+
ℏ + 𝑆(𝑗)

−
ℏ )+∑

𝑗
𝑉 (𝑂)

𝑗 ( ̂𝑎†
𝑂 + ̂𝑎𝑂)(𝑆(𝑗)

+
ℏ + 𝑆(𝑗)

−
ℏ )+∑

𝑗
𝑉 (𝑃)

𝑗 ( ̂𝑎†
𝑃 + ̂𝑎𝑃 )(𝑆(𝑗)

+
ℏ + 𝑆(𝑗)

−
ℏ ) (32)

Again, for the sake of simplicity, and following S5.1, we focus here on electric coupling. This reduces the
generic expression of Eq. 30 to Eq. 29:

�̂� = Δ𝑀𝑐2 𝑆(𝑎)
𝑧
ℏ + Δ𝑀𝑐2 𝑆(𝑏)

𝑧
ℏ + ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

−⟨ΦD2
|d ⋅ Ê|Φ4He⟩(

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ ) − ⟨ΦD2

|d ⋅ Ê|Φ4He⟩(
𝑆(𝑏)

+
ℏ + 𝑆(𝑏)

−
ℏ )

(33)

We can denote this as

�̂� = �̂�0 + ̂𝑉 (34)

where

�̂�0 = Δ𝑀𝑐2 𝑆(𝑎)
𝑧
ℏ + Δ𝑀𝑐2 𝑆(𝑏)

𝑧
ℏ + ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

̂𝑉 = − ⟨ΦD2
|d ⋅ Ê|Φ4He⟩(

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ ) − ⟨ΦD2

|d ⋅ Ê|Φ4He⟩(
𝑆(𝑏)

+
ℏ + 𝑆(𝑏)

−
ℏ )

(35)

In terms of nomenclature, we use 𝑉 here to describe a coupling generically, i.e., when the emphasis is
less on a specific transition and coupling, and more on the exploration of generalizable dynamics (although
we will at times use concrete examples such as electric coupling for the D2/4He transition as in Eq. 33).
Later in this text, we will use the letter 𝑈 specifically to refer to coupling for the D2/4He transition. This
distinction in nomenclature is particularly relevant, when rate estimates are developed (section S5.3 and
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subsequent sections), where we need to make use of concrete matrix elements that are characteristic of
specific transitions and couplings.

Excitation transfer as the result of second-order interactions

Since first-order processes cannot be resonant due to the energy mismatch between the nuclear system and
the oscillators, we are interested in second-order excitation transfer, which can be resonant. The first-order
interactions in the Hamiltonian can be replaced by second-order interactions (for a derivation of second-order
interactions see section S6.4)

�̂� → �̂�0 + ̂𝑉 1
𝐸 − �̂�0

̂𝑉 (36)

The terms in this Hamiltonian couple to states on resonance, near resonance (with exchange of oscillator
quanta), above resonance by 23.85 MeV, below resonance by 23.85 MeV as well as above resonance by 47.7
MeV and below resonance by 47.7 MeV. To see this more explicitly we can define:

̂𝑉+ = − ⟨ΦD2
|d ⋅ Ê|Φ4He⟩(

𝑆(𝑎)
+
ℏ + 𝑆(𝑏)

+
ℏ )

̂𝑉− = − ⟨ΦD2
|d ⋅ Ê|Φ4He⟩(

𝑆(𝑎)
−
ℏ + 𝑆(𝑏)

−
ℏ )

(37)

which then allows us to write the second-order Hamiltonion as

�̂� → �̂�0 + ̂𝑉−
1

𝐸 − �̂�0
̂𝑉− + ̂𝑉+

1
𝐸 − �̂�0

̂𝑉+ + ̂𝑉+
1

𝐸 − �̂�0
̂𝑉− + ̂𝑉−

1
𝐸 − �̂�0

̂𝑉+ (38)

This second-order (i.e., excitation transfer) Hamiltonian [88] includes coupling to intermediate states that
can be massively off of resonance. ‘Off of resonance’ in this context means that we consider the occupation
of states that have more or less of the total energy available during the dynamical process, but since the
process is fast, this is technically allowed by the formalism. For focus on the most likely dynamics, the
coupling that leads to terms with double deexcitation or double excitation (the first two coupling terms in
Eq. 38) are eliminated by restricting the terms kept in the Hamiltonian (to focus on second-order excitation
transfer to off-resonant nuclear states with single excitation or deexcitation) according to

�̂� → �̂�0 + ̂𝑉+
1

𝐸 − �̂�0
̂𝑉− + ̂𝑉−

1
𝐸 − �̂�0

̂𝑉+ (39)

In other words, the scenario shown in Figure S9, while conceivable, is excluded from the modeling effort
proposed here since it is considered less relevant than excitation transfer via single excitation and deexcitation.
The latter dynamics are illustrated in Figure S10.

If the coupling is weak (as it is in our case), then the self-energy terms can be expected to be small. This
suggests that the self-energy terms can be dispensed with and the focus is on the indirect transitions by
working with

�̂� → �̂�0 + ̂𝑉 (𝑏)
+

1
𝐸 − �̂�0

̂𝑉 (𝑎)
− + ̂𝑉 (𝑎)

+
1

𝐸 − �̂�0
̂𝑉 (𝑏)
− + ̂𝑉 (𝑏)

−
1

𝐸 − �̂�0
̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

−
1

𝐸 − �̂�0
̂𝑉 (𝑏)
+ (40)
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Figure S9: Excited D2 and ground 4He nuclear states are coupled to a resonant nuclear state via a shared oscillator mode
(ℏ𝜔0). Resonant nuclear energy transfer occurs through the temporary occupation of virtual states, in which either more (upper
pathway) or fewer (lower pathway) of the nuclear systems are excited. When there is more than one donor and one receiver
present, as is the case in the systems we consider with many donors and receivers (shown here as an example are two 𝐷2 donors
and two 4He receivers), then double excitation and double deexcitation can occur. For the sake of simplicity, we do however
exclude scenarios with double excitation and deexcitation from the modeling in Eq. 39.

where

̂𝑉 (𝑎)
± = − ⟨ΦD2

|d ⋅ Ê|Φ4He⟩
𝑆(𝑎)

±
ℏ

̂𝑉 (𝑏)
± = − ⟨ΦD2

|d ⋅ Ê|Φ4He⟩
𝑆(𝑏)

±
ℏ

(41)

The resulting model is one that focuses only on terms responsible for nearly resonant excitation transfer
(i.e., the receiver system matches the donor system in energy) via second-order (indirect) coupling through
the traversal of off-resonant intermediate states. Such a model will help move toward analyzing the coherent
dynamics of interest.

The upper and lower parts in Figure S10 represent different off-resonant pathways between real states in the
Hamiltonian via intermediate states, which are also sometimes described as virtual states. In a Hamiltonian
matrix such intermediate states are represented through off-diagonal matrix elements.

Destructive interference and its reduction through loss

An approximate evaluation of the denominators of Eq. 40 leads to

�̂� → �̂�0 + ̂𝑉 (𝑏)
+

1
Δ𝑀𝑐2

̂𝑉 (𝑎)
− + ̂𝑉 (𝑎)

+
1

Δ𝑀𝑐2
̂𝑉 (𝑏)
− + ̂𝑉 (𝑏)

−
1

−Δ𝑀𝑐2
̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

−
1

−Δ𝑀𝑐2
̂𝑉 (𝑏)
+ (42)
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Figure S10: Excited D2 and ground 4He nuclear states are coupled to a resonant nuclear state via a shared oscillator mode
(ℏ𝜔0). Resonant nuclear energy transfer occurs through the temporary occupation of virtual states, in which either both (upper
pathway) or neither (lower pathway) of the two nuclear systems are excited. Note that, due to the symmetry in the upper and
lower pathways, destructive interference greatly hinders indirect nuclear excitation transfer.

�̂� → �̂�0 − 1
Δ𝑀𝑐2 ( ̂𝑉 (𝑏)

− ̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

− ̂𝑉 (𝑏)
+ − ̂𝑉 (𝑏)

+ ̂𝑉 (𝑎)
− − ̂𝑉 (𝑎)

+ ̂𝑉 (𝑏)
− ) (43)

where

̂𝑉 (𝑏)
− ̂𝑉 (𝑎)

+ + ̂𝑉 (𝑎)
− ̂𝑉 (𝑏)

+ − ̂𝑉 (𝑏)
+ ̂𝑉 (𝑎)

− − ̂𝑉 (𝑎)
+ ̂𝑉 (𝑏)

− ∼ 0 (44)

and therefore

�̂� → �̂�0 (45)

As can be seen from the diagram in Figure S10 and from the corresponding simplified Eq. 45, the symmetry
of upper and lower pathways causes destructive interference, resulting in an interaction term of 0. In practice
this represents a localization effect, where coupling would be dominated by nearest neighbor interactions,
with the result of no or only very weak indirect coupling between the real states of more distant nuclei. In
practice, this would mean no or unobservably slow transfer rates to distant nuclei.

This kind of destructive interference is reduced if the symmetry of the available pathways through interme-
diate states is broken and certain pathways are removed or weakened. This is indeed the case when loss
selectively affects some pathways more than others. Related to this concept, the impact of dephasing and
dissipation loss on coherent excitation transfer dynamics were considered by Plenio and Huelga [89], who
found an enhancement of an excitation transfer rate due to interactions of a closed quantum system with a
noisy environment.

Consider again the case where 23.85 MeV is transferred from a D2 molecule (representing a highly metastable
4He excited state) to a 4He nucleus (4He ground state) via indirect coupling per the above process. The
intermediate states at the bottom of the diagram in Figure S10 are off of resonance by 23.85 MeV. Consider
the situation where there are relevant loss channels available for the |−, −⟩ states on the lower part of
the diagram, as depicted in Figure S11, where the system can dissipate 23.85 MeV to bring itself back onto
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resonance; and where such loss channels are not available for the |+, +⟩ intermediate states on the upper part
of the diagram. This is indeed how loss can affect such a system selectively, because the basis state energy
lies well above the energy eigenvalue. If the system is perturbed when one of the lower intermediate virtual
states is occupied, the system can terminate at the |−, −⟩ state resulting in a transfer of the off-resonance
energy Δ𝐸 from the oscillator to a loss channel. This kind of mechanism was proposed in Hagelstein 2002
[90] in connection with the closely related problem of multi-phonon exchange, and modeled in subsequent
papers (see, for example, [91]); in connection with excitation transfer this was discussed in [92]. The basic
idea is that quantum systems behave differently on resonance and off of resonance, and decay channels can
be very different in the intermediate states involved in excitation transfer due to their being off of resonance.
In this picture, off-resonant loss was considered to be very fast, since the phonon mode in the model under
consideration couples to all of the nuclei in the lattice, potentially providing access to many loss channels.

Figure S11: While the symmetry present in the scenario of Figure S10 causes destructive interference and greatly hinders
excitation transfer, we can conceive of a scenario, where a form of idealized loss eliminates the bottom pathway and reduces
destructive inference. In that case, excitation transfer is much less hindered.

In terms of physical mechanisms for causing this kind of selective loss in the MeV range, nuclear disintegration
of lattice nuclei was considered to be dominant [93], leading to the complete removal of all lower pathways
and therefore the complete elimination of destructive interference. This kind of loss can be considered to be
“ideal loss” with regard to the acceleration of excitation transfer. However, it was subsequently understood
that it is not possible for there to be contributions from all the nuclei in the lattice off of resonance and this
form of loss to lattice nuclei comes with its own form of destructive interference.

In contrast to focusing on other coupled lattice nuclei, there are loss processes associated with the nuclei
directly involved in the excitation transfer that do not suffer from this kind of destructive interference. Such
a form of loss is described in more detail in section S6.5. The conclusion of that discussion is that it is
possible to work with the conceptually simple picture of ideal loss that assumes a complete elimination of
destructive interference (via removal of all lower pathways in the diagram), and then apply a correction
factor |1 − 𝜂| to account for the imperfect elimination of destructive interference in actual physical systems
(per section S6.5). The correction factor derives from the loss-based asymmetry between the upper pathway
and the lower pathway (with coupling constants 𝑈 and coupling constants 𝑈 ′ = 𝜂𝑈 respectively in Figure
S12). An estimate for this correction factor on the order of 0.1 is given in section S6.5.
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Figure S12: The complete elimination of lower pathways in Figure S11 depends on a form of loss that is idealized. In reality,
while there are strong loss channels affecting the lower pathways (see section S6.5), the reduction of destructive interference is
not complete. To account for the presence of loss in the lower pathways (and the partial reduction of destructive interference), we
introduce 𝜂 to represent the difference in coupling between states in the lower pathways (𝑈′) and states in the upper pathways
(𝑈). Note that we use here 𝑈 to refer to coupling in the D2/4He transition (instead of the generic 𝑉 ), consistent with section
S5.3 and subsequent sections.

The model simplifies considerably when the system enters a regime where loss rate associated with the overall
system (Γ) is fast compared to the two-level system energy [92], i.e., when

1
2ℏΓ ≫ Δ𝑀𝑐2 (46)

Now suppose that we augment the second-order Hamiltonian of Eq. 40 by including off-resonant loss for the
terms that involve an energy excess in the intermediate states, then we would obtain

�̂� → �̂�0 + ̂𝑉 (𝑏)
+

1
𝐸 − �̂�0 + 𝑖ℏΓ/2

̂𝑉 (𝑎)
− + ̂𝑉 (𝑎)

+
1

𝐸 − �̂�0 + 𝑖ℏΓ/2
̂𝑉 (𝑏)
− + ̂𝑉 (𝑏)

−
1

𝐸 − �̂�0
̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

−
1

𝐸 − �̂�0
̂𝑉 (𝑏)
+ (47)

An approximate evaluation of the denominators leads to

�̂� → �̂�0 + ̂𝑉 (𝑏)
+

1
Δ𝑀𝑐2 + 𝑖ℏΓ/2

̂𝑉 (𝑎)
− + ̂𝑉 (𝑎)

+
1

Δ𝑀𝑐2 + 𝑖ℏΓ/2
̂𝑉 (𝑏)
− + ̂𝑉 (𝑏)

−
1

−Δ𝑀𝑐2
̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

−
1

−Δ𝑀𝑐2
̂𝑉 (𝑏)
+ (48)

In the case of large loss (per Eq. 46), destructive interference is eliminated, and the Hamiltonian reduces to

�̂� → �̂�0 − 1
Δ𝑀𝑐2 ( ̂𝑉 (𝑏)

− ̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

− ̂𝑉 (𝑏)
+ ) (49)

where

̂𝑉 (𝑏)
− ̂𝑉 (𝑎)

+ + ̂𝑉 (𝑎)
− ̂𝑉 (𝑏)

+ > 0 (50)

30



In other words, in the presence of strong selective loss, there exists a nonzero indirect coupling between
real states of different nuclei coupled to the same oscillator mode (including distant nuclei). This indirect
coupling enables excitation transfer.

Finally, we recall that this indirect coupling is based on the assumption of ideal loss. To get a physically
more accurate result, we apply the correction factor per section S6.5:

�̂� → �̂�0 − 1
Δ𝑀𝑐2 ( ̂𝑉 (𝑏)

− ̂𝑉 (𝑎)
+ + ̂𝑉 (𝑎)

− ̂𝑉 (𝑏)
+ )|1 − 𝜂| (51)

For the sake of simplicity, we will consider the case of ideal loss for the remainder of this section and not
carry the correction factor |1 − 𝜂| through every expression. We point out, however, that it is necessary to
apply it, when determining numbers intended to match experiments, as is the case in later sections of this
text.

Resonance condition: averaging over the oscillators

We seek to further simplify the main Hamiltonian (Eq. 51) so that we can analyze excitation transfer
dynamics. In this subsection, we formally introduce the resonance condition, which assumes that the donor
and receiver systems in groups a and b have energy levels that are matched. This is the case in our example
with D2 and 4He nuclei which represent the same physical system in different states.

We will need to keep in mind this condition later when considering excitation transfer across different species
of nuclei, e.g., between D2 systems and APd systems, as discussed in section S5.5 and onward.

The electric field operator creates or annihilates oscillator quanta, which means that the model under con-
sideration couples to states that involve a different number of quanta. This can be seen by expanding out
the Hamiltonian of Eq. 49 according to

�̂� → �̂�0 − 1
Δ𝑀𝑐2 ⟨ΦD2

|d|Φ4He⟩ ⋅ ÊÊ ⋅ ⟨ΦD2
|d|Φ4He⟩(

𝑆(𝑏)
−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ ) (52)

This interaction involves the square of the electric field, which means that there is coupling between states
that differ by 2, 0 and -2 oscillator quanta. Since we are here interested only in resonant processes, it is
possible to eliminate the coupling to off-resonant (oscillator) final states by taking an expectation value over
the oscillator degrees of freedom, yielding

�̂� → ⟨�̂�0⟩𝑜𝑠𝑐 − 1
Δ𝑀𝑐2 ⟨ΦD2

|d|Φ4He⟩ ⋅ ⟨ÊÊ⟩𝑜𝑠𝑐 ⋅ ⟨ΦD2
|d|Φ4He⟩(

𝑆(𝑏)
−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ ) (53)

Thus the model that results is maximally simplified to include only resonant excitation transfer processes.
Note that since in resonant excitation transfer no net change in the two-level system energy results, the
two-level system energy is constant. Note also that since there is no coupling to off-resonant terms of the
oscillators, all of the basis state energies will be the same. This means that ⟨�̂�0⟩𝑜𝑠𝑐 will not contribute to
the associated coherent dynamics, and that we can work with a Hamiltonian of the form

�̂� = 1
2ℏΩ𝑎𝑏(𝑆(𝑏)

−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ ) (54)

where Ω𝑎𝑏 is the generalized Rabi frequency which depends on the square of the interaction 𝑉
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−1
2ℏΩ𝑎𝑏 = 1

Δ𝑀𝑐2 ⟨ΦD2
|d|Φ4He⟩ ⋅ ⟨ÊÊ⟩𝑜𝑠𝑐 ⋅ ⟨ΦD2

|d|Φ4He⟩ = 𝑉 2

Δ𝑀𝑐2 (55)

Eq. 54 is now the simplified Hamiltonian which describes resonant excitation transfer between sets of many
two-level systems. Note that no self-energy terms are included as we assume weak coupling within groups a
and b.

Approximate classical dynamics from Ehrenfest’s theorem

We can now proceed to explore the coherent dynamics associated with cooperative resonant excitation
transfer between two degenerate levels, as described by the simplified Hamiltonian in Eq. 54.

As discussed by Hagelstein in [94], Ehrenfest’s theorem can be applied

𝑑
𝑑𝑡⟨�̂�⟩ = ⟨𝑑�̂�

𝑑𝑡 ⟩ + 1
𝑖ℏ⟨[�̂�, �̂�]⟩ (56)

and approximate classical evolution equations can be developed for this system. This yields

𝑑
𝑑𝑡𝑆(𝑎)

𝑥 (𝑡) = Ω𝑎𝑏
𝑆(𝑏)

𝑦 (𝑡)
ℏ 𝑆(𝑎)

𝑧 (𝑡)

𝑑
𝑑𝑡𝑆(𝑎)

𝑦 (𝑡) = − Ω𝑎𝑏
𝑆(𝑏)

𝑥 (𝑡)
ℏ 𝑆(𝑎)

𝑧 (𝑡)

𝑑
𝑑𝑡𝑆(𝑎)

𝑧 (𝑡) = Ω𝑎𝑏(𝑆(𝑏)
𝑥 (𝑡)
ℏ 𝑆(𝑎)

𝑦 (𝑡) − 𝑆(𝑏)
𝑦 (𝑡)
ℏ 𝑆(𝑎)

𝑥 (𝑡))

(57)

and

𝑑
𝑑𝑡𝑆(𝑏)

𝑥 (𝑡) = Ω𝑎𝑏
𝑆(𝑎)

𝑦 (𝑡)
ℏ 𝑆(𝑏)

𝑧 (𝑡)

𝑑
𝑑𝑡𝑆(𝑏)

𝑦 (𝑡) = − Ω𝑎𝑏
𝑆(𝑎)

𝑥 (𝑡)
ℏ 𝑆(𝑏)

𝑧 (𝑡)

𝑑
𝑑𝑡𝑆(𝑏)

𝑧 (𝑡) = Ω𝑎𝑏(𝑆(𝑎)
𝑥 (𝑡)
ℏ 𝑆(𝑏)

𝑦 (𝑡) − 𝑆(𝑎)
𝑦 (𝑡)
ℏ 𝑆(𝑏)

𝑥 (𝑡))

(58)

Since these dynamics are relatively simple, it is possible to eliminate the 𝑥 and 𝑦 components and obtain

1
Ω2

𝑎𝑏

𝑑2

𝑑𝑡2 𝑆(𝑎)
𝑧 (𝑡) + |S(𝑏)|2 − (𝑆(𝑏)

𝑧 )2(𝑡)
ℏ2 𝑆(𝑎)

𝑧 (𝑡) = |S(𝑎)|2 − (𝑆(𝑎)
𝑧 )2(𝑡)

ℏ2 𝑆(𝑏)
𝑧 (𝑡)

1
Ω2

𝑎𝑏

𝑑2

𝑑𝑡2 𝑆(𝑏)
𝑧 (𝑡) + |S(𝑎)|2 − (𝑆(𝑎)

𝑧 )2(𝑡)
ℏ2 𝑆(𝑏)

𝑧 (𝑡) = |S(𝑏)|2 − (𝑆(𝑏)
𝑧 )2(𝑡)

ℏ2 𝑆(𝑎)
𝑧 (𝑡)

(59)
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Nonlinear Rabi oscillations

Solutions to these equations are, in general, nonlinear Rabi oscillations [95, 96], in which occupation probabil-
ity periodically oscillates from ensemble 𝑎 to ensemble 𝑏 and back in a pulsed manner with a delay between
pulses.

It is possible to develop an analytic solution for a single excitation transfer pulse of this sort under conditions
where the excitation is transferred from ensemble 𝑎 to ensemble 𝑏. When the number of two-level systems
in the two sets (𝑎 and 𝑏) differ, then we can write

𝑆(𝑏)
𝑧 (𝑡) = − |S(𝑏)| + 2|S(𝑏)|

|S(𝑎)|[1 − tanh2 (√ |S(𝑎)||S(𝑏)|
ℏ2 Ω𝑎𝑏𝑡)]

|S(𝑎)| − |S(𝑏)| tanh2 (√ |S(𝑎)||S(𝑏)|
ℏ2 Ω𝑎𝑏𝑡)

(60)

This results in a pulse-like increase and decrease of Dicke enhancement, whose shape is depicted in Figure
S13.

Figure S13: Illustration of the Dicke enhancement pulse in Eq. 60.

The pulse length (Δ𝜏𝐷𝑖𝑐𝑘𝑒) when the populations are mismatched is

|Ω𝑎𝑏|Δ𝜏𝐷𝑖𝑐𝑘𝑒 = 𝜋√
12

√ ℏ
|S(𝑎)|

ℏ
|S(𝑏)| (61)

where |S(𝑎)|
ℏ is the initial population of group a (in our case 𝑁D2

initially) divided by 2.

Note that for this highly idealized system that we have not taken into account de-coherence or loss processes.
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Minimum and maximum Dicke factors

Based on the analytical solution in Eq. 60 and Eq. 61, we can estimate the maximum transfer rate Γ𝑚𝑎𝑥
(for a mismatched system) to be on the order of

Γ𝑚𝑎𝑥 ∼ 1
Δ𝜏 2min{|S(𝑎)|

ℏ , |S(𝑏)|
ℏ } ≈ |Ω𝑎𝑏|√|S(𝑎)|

ℏ
|S(𝑏)|

ℏ min{|S(𝑎)|
ℏ , |S(𝑏)|

ℏ } (62)

Minimum and maximum Dicke enhancement factors can also be derived from the pseudo-spin Hamiltonian
in Eq. 54 (see section S6.12 for the derivations), yielding

�̂� = 1
2ℏΩ𝑎𝑏√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏 (63)

with the transfer rate

Γ = Ω𝑎𝑏√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏 (64)

We can define the Dicke enhancement factor 𝛽𝐷𝑖𝑐𝑘𝑒 as

𝛽𝐷𝑖𝑐𝑘𝑒 = √𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏 (65)

The Dicke enhancement factor assumes its minimum value, at 𝑡 = 0 when the dynamics just start up. It
then applies to the rate for the first transition.

In this case we can take

𝑀𝑎 = 𝑆𝑎 𝑀𝑏 = − 𝑆𝑏

and the expression simplifies to

Γ = Ω𝑎𝑏√2𝑆𝑎√2𝑆𝑏 (66)

We can connect with the number of D2 molecules and with the number of ground state 4He atoms according
to

2𝑆𝑎 = 𝑁D2
2𝑆𝑏 = 𝑁4He

We end up with

Γ𝑚𝑖𝑛 = Ω𝑎𝑏√𝑁D2
√𝑁4He (67)

for the minimum rate.

For the second transfer, we can take

𝑀𝑎 = 𝑆𝑎 − 1 𝑀𝑏 = − 𝑆𝑏 + 1
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which results in a rate

Γ𝑚𝑖𝑛+1 = Ω 2√𝑁D2
√𝑁4He (68)

For the n-th transfer, we can take

𝑀𝑎 = 𝑆𝑎 − 𝑛 𝑀𝑏 = − 𝑆𝑏 + 𝑛

which results in a rate

Γ𝑚𝑖𝑛+𝑛 = Ω 𝑛√𝑁D2
√𝑁4He (69)

The Dicke enhancement factor takes on its maximum value, when a large number of Dicke transitions have
occurred. In that case there is an additional enhancement of the order of 𝑁D2

, resulting in

Γ𝑚𝑎𝑥 = Ω1
4𝑁D2

√𝑁D2
√𝑁4He (70)

for the maximum rate.
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S5.3 Transfer rate estimates: D2 to 4He nuclei

In the previous part, the dynamics of excitation transfer were analyzed in the nuclear Dicke model and it was
found that excitation transfer in the form of nonlinear Rabi oscillations can occur between two ensembles
of nuclei a and b that are coupled indirectly through shared oscillator modes. In other words, excitation (or
rather the occupation probability of excitation) oscillates between groups a and b. In this subsection, a first
rate estimate is provided for this process, continuing with the earlier, conceptually simple example of D2
donor systems comprising group a and 4He receiver systems comprising group b. At the end of this section
stands a transfer rate estimate for excitation transfer based on each of the three couplings between nuclei
and vibrational modes to be considered in this context: magnetic dipole coupling, electric dipole coupling,
and relativistic coupling. Because of this structure, this section also contains a quantitative comparison of
these couplings, yielding the insight that relativistic coupling is substantially stronger than magnetic and
electric dipole coupling.

An overview of this particular case of nuclear excitation transfer is given in Figure S14, which shows explicitly
the hindrance represented by the Coulomb barrier part of the interatomic potential of the D2 molecule,
which is represented by the expression with the Gamow factor. Figure S15 illustrates the same process but
emphasizes its time evolution, which includes traversal of off-resonant intermediate states per the discussion
in section S5.2.

In the given case, the Gamow hindrance factor comes into the transfer rate expression twice: once, due to the
D2 molecule transition to the 4He state on the donor side, and once due to the 4He nucleus transition to the
D2 molecule state on the receiver side. This is not the case in the faster nuclear excitation transfer scenarios
explored later in this text. For the scenario here, we will see that, while the overall transfer rate is a function
of several parameters and is therefore amenable to change and acceleration more so than the spontaneous
fusion rate, the predicted transfer rate is still too low to yield observable results. Nevertheless, the picture
developed here will serve as an important stepping stone towards scenarios of greater interest—which are
predicted to yield observable results—introduced and discussed in the latter sections.

When evaluating obtained rates for nuclear excitation transfer, it is important to compare them with the
expected decoherence times. If the mean transfer rate in a given system is longer than the corresponding
mean decoherence time, then that system is unlikely to yield observable results at scale.

Typical qubits used in quantum computers, where the decoherence time is from microseconds to seconds
depending on the technology used, all operate at temperatures close to 0 K. The case of coherence between
nuclei is quite different. On the one hand, nuclei interact much less with the environment, which has to do
with the smaller size of their dipoles, as discussed in section 3 of the main text. However, since we consider
nuclear systems across multiple atoms—such as in the case of nuclear wave functions of D2 molecules—spatial
degrees of freedom, which include molecular dissociation and angular momentum changes, has the potential
to disrupt coherence.

As shown in section S6.22, we expect a mean decoherence time of about 1 ns. Another decoherence mechanism
is spin relaxation, which is, however, much slower than molecular dissociation. A proxy for spin relaxation in
the systems of interest is provided by nuclear magnetic resonance experiments. In the study of deuteron spin
relaxation in metal deuterides at room temperature, there are two time parameters of interest: 𝑇1, which
is a measure of the (longer) lifetime associated with a spin correlation, and 𝑇2, which is a measure of the
(shorter) dephasing time. A typical value for spin dephasing of hydrogen in palladium is 10 ms at room
temperature [97], so we can expect the same order of magnitude for deuterium or helium.

For now, we will adopt a decoherence time on the order of 1 ns. The later section S5.8 considers this kind
of decoherence as an explicit constraint, which an excitation transfer process needs to exceed for it to yield
observable results. In that section, basic experimental parameters will be given under which the predicted
transfer rate does indeed exceed the decoherence time. Section S5.8 will build on section S5.5, which contains
an extended variant of the model applied here.
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Figure S14: Resonant nuclear excitation transfer of 23.85 MeV from the D2 → 4He fusion decay to the 4He → D2 excitation.
We consider two ensembles of nuclei 𝑎 and 𝑏 whereby ensemble 𝑎 denotes the group of D2 nuclei in the coupled system (which
can undergo the D2 → 4He transition) and 𝑏 denotes the group of 4He nuclei in the coupled system (which can undergo the 4He
→ D2 transition). The collective transition of group a occurs coherently together with the corresponding transition in group b.
Note that in actuality, this kind of excitation transfer process involves pathways through different possible intermediate states,
which exhibit an asymmetry in how they are affected by loss (represented by 𝜂 in Fig. S15).

Figure S15: Resonant nuclear excitation transfer between a D2/4He donor transition and a D2/4He receiver transition
by indirect coupling via a shared oscillator mode. Destructive interference between the upper and lower intermediate (i.e.,
virtual) states is reduced by selective loss in the lower pathway, allowing for resonant nuclear excitation transfer to occur (here
represented by 𝜂 per section S6.5).
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Recalling the expression for the excitation transfer rate

The derivation of Dicke factors in S6.12 yields expressions for the minimum and maximum rate of excitation
transfer. Following Eq. 67 the minimum rate is

Γ𝑚𝑖𝑛 = |Ω𝑎𝑏|√𝑁D2
𝑁4He (71)

where Ω𝑎𝑏 refers to the generalized Rabi frequency for oscillating between the transitions in group a and b.

Following Eq. 70 the maximum transfer rate is (when a large number of transitions have occurred)

Γ𝑚𝑎𝑥 = |Ω𝑎𝑏| 14𝑁D2
√𝑁D2

𝑁4He (72)

The generalized Rabi frequency is (Eq. 55)

1
2ℏ|Ω𝑎𝑏| = 𝑉 2

𝑔𝑒𝑛
Δ𝐸 = 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 (73)

where notationwise we added here a subscript to 𝑉 to highlight when a generic coupling is referred to rather
than a specific one. For the transitions considered in this section, as shown in Figure S14, the generic
coupling 𝑉𝑔𝑒𝑛 is represented as

𝑉𝑔𝑒𝑛 = 𝑈 = 𝑈0 𝑒−𝐺 (74)

since, as we will see shortly, the Gamow factor term 𝑒−𝐺 can be explicated as a key factor in all of the
indirect coupling terms in this section (where 𝑈0 differs based on the nature of the coupling, i.e., electric,
magnetic, and relativistic coupling).

Note that for rate calculations under realistic conditions, we need to work with realistic loss scenarios instead
of ideal loss. Therefore, per Eq. 51 we bring in again the correction factor |1 − 𝜂| (in this case twice, because
for excitation transfer from D2 to 4He, nonideal loss occurs at the donor and the receiver side, see S6.5):

1
2ℏ|Ω𝑎𝑏,𝑙𝑜𝑠𝑠| = 2|1 − 𝜂| 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 (75)

resulting in

Γ𝑚𝑖𝑛 = 2
ℏ2|1 − 𝜂| 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 √𝑁D2

𝑁4He (76)

For being able to use these simple versions of the minimum and maximum Dicke factors we need to assume
that there is a greater number of receiver (4He) systems than donor (D2) systems.

Concretely, we consider a uniform oscillator mode in PdD spanning 1018 unit cells (corresponding to a volume
defined by a mode frequency in the MHz range). In this volume, we then consider to be present 𝑁D2

= 1015

donor systems (representing group a) and 𝑁4He = 1016 receiver systems (representing group b). This then
results in ratios of 𝑁D2

𝑁 of 0.001 and 𝑁4He
𝑁 of 0.01. All nuclei in group a and b are uniformly coupled to the

same oscillator mode(s) per the discussion in section S5.1.
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Most physical metal-hydrogen systems will not exhibit such high helium content, although they can be
prepared this way by, for example, loading the metal lattice with helium in addition to deuterium. Note also
that there is a helium content on the order of 1 ppm in natural air and we can expect some helium to be
present in all metal lattices. That being said, the assumption of a large number of 4He nuclei is made here
for pedagogical purposes, as we will later (S5.5 and onwards) consider a case where the receiver systems are
Pd nuclei, which are indeed greater in number than deuteron pairs in palladium-deuterium systems.

Next, the Rabi frequency will be evaluated for the three couplings available: magnetic dipole coupling
𝑈𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐, electric dipole coupling 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐, and relativistic coupling 𝑈𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐.

Magnetic dipole coupling

For magnetic dipole coupling, the indirect coupling strength between a D2/4He donor transition (assumed
to start out in the excited state, i.e., as D2) and a D2/4He receiver transition (assumed to start out in the
ground state, i.e., as 4He) per the nuclear excitation transfer model discussed in section S5.1 and S5.2 is

𝑈2
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = ⟨ΦD2

|𝝁|Φ4He⟩ ⋅ ⟨Ψ𝑜𝑠𝑐|B̂B̂|Ψ𝑜𝑠𝑐⟩ ⋅ ⟨ΨD2
|𝝁|Ψ4He⟩ (77)

where Ψ𝑜𝑠𝑐 describes the state of the spins which give rise to the magnetic fields at the sites of the D2 donor
systems and the 4He receiver systems.

See section S6.13 for a derivation of the terms, which yields

𝑈2
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = (10√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

2
(𝜇𝑁𝐵)2 (78)

where 𝑣𝑛𝑢𝑐/𝑣𝑚𝑜𝑙 is the ratio of the characteristic nuclear to molecule volume as discussed on section S6.3.

Note that magnetic coupling affects the 5D state of the nuclear wave function for D2 [98].

Recall that the minimum rate (starting rate) is (Eq. 76)

Γ𝑚𝑖𝑛 = 2
ℏ2|1 − 𝜂| 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 √𝑁D2

𝑁4He (79)

Plugging in 𝑈2
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 for 𝑉 2

𝑔𝑒𝑛 yields

Γ𝑚𝑖𝑛 = 2
ℏ2|1 − 𝜂|(10√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

2 (𝜇𝑁𝐵)2

Δ𝑀𝑐2 √𝑁D2
𝑁4He (80)

To evaluate this expression we need to consider the values of all relevant parameters. We take:

|1 − 𝜂| = 0.1 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.64 × 10−12 𝐺 = 94.8 (81)

where the volume ratio and the Gamow factor are for the 5D state and where |1 − 𝜂| is for the D2/3+1/4He
contribution to the D2/4He transition per section S6.5. The volume ratio and the (unscreened) Gamow
factor G take on the values determined in section S6.3 and are discussed in more detail there.

Moreover, we follow the scenario given in the introduction with
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𝑁D2

𝑁 = 0.001 × 0.3 × 1
25

𝑁4He
𝑁 = 0.01 (82)

where we assume a loaded lattice where every 1000th unit cell contains a D2 molecule and where 30% of the
D2 molecules are in the 5D state (see Figure S39 in section S6.1); with only one of the 25 possible 5D states
(with 𝐽 = 1) being involved in the −𝝁 ⋅ B transition for a 𝑧-directed magnetic field; and where every 100th
unit cell contains a 4He nucleus.

The nuclear magneton has a value of

𝜇𝑁 = 3.15 × 10−8 eV
T (83)

and we assume a magnetic field strength of

𝐵 = 0.1 T (84)

Note that this model would be most relevant under conditions where the nuclei that undergo transitions are
in the vicinity of a strong magnet such that the interaction of the nuclei with any individual electronic spin
is idealized to be uniform.

Plugging in all of the above values results in a minimum transfer rate (unscreened) of

Γ𝑚𝑖𝑛,𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 2.64 × 10−89 s−1 (85)

Since we used the unscreened Gamow factor 𝐺 above, we can consider the effects of screening by multiplying
with (per section S6.3)

𝑒2Δ𝐺𝑠𝑐𝑟 (86)

where

Δ𝐺𝑠𝑐𝑟 = 47.8 (87)

accounts for electron screening of the 5D channel of the D2 nuclear wave function with 350 eV screening
potential (see section S6.3). The screening factor per section S6.3 comes in twice here since screening affects
the donor side transition as well as the receiver side transition.

This results in

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 8.73 × 10−48 s−1 (88)

To obtain the maximum rate (peak rate of the Dicke enhancement pulse), we apply the additional Dicke
enhancement, per section S5.2:

Γ𝑚𝑎𝑥 = Γ𝑚𝑖𝑛
1
4𝑁D2

(89)

For 𝑁D2
= 1015 this yields
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Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 2.18 × 10−33 s−1 (90)

Again, this is the population-level transfer rate, i.e., the rate at which excitation from the ensemble in group
a transfers to the ensemble in group b. To obtain a rate per deuteron pair that is comparable to the estimate
given by Koonin and Nauenberg 1989 [2], we normalize the expression. Applying this normalization to the
Dicke-enhanced expression we obtain

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 2.18 × 10−48 s−1 (91)

and

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 8.73 × 10−63 s−1 (92)

Note that this rate is not in the observable range (see S1.1). Also note that the same amount of screening
(350 eV) applied to the base rate given by Koonin and Nauenberg 1989 [2] and reproduced in section S6.3
(see table 8) yields a rate per deuteron pair on the order of 10−20 s−1. Therefore, inducing the D2 → 4He
transition through nuclear excitation transfer based on magnetic coupling is an interesting scenario to study,
but it does not appear to outcompete the spontaneous fusion rate.

Electric dipole coupling

Next we consider a situation that corresponds to the system discussed in S5.2 where electric dipole coupling
results from oscillations of the nuclei (phonons and plasmons).

For electric dipole coupling, the indirect coupling strength between a D2/4He donor transition (assumed to
start out in the excited state, i.e., as D2) and a D2/4He receiver transition (assumed to start out in the
ground state, i.e., as 4He) is

𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = ⟨ΦD2

|d|Φ4He⟩ ⋅ ⟨Ê4𝐻𝑒Ê4𝐻𝑒⟩𝑜𝑠𝑐 ⋅ ⟨ΦD2
|d|Φ4He⟩ (93)

See section S6.14 for a derivation of the terms, which yields (here given for acoustic phonons)

𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 3

4𝛼
ℏ𝛾𝑟𝑎𝑑
Δ𝑀𝑐2

(ℏ𝜔𝐴)2

(Δ𝑀𝑐2)2
√𝑀𝐷2

𝑀4𝐻𝑒𝑐2

𝑁𝑍2 (𝑃𝑑𝑖𝑠𝑠𝜏𝐴) (94)

where 𝛾𝑟𝑎𝑑 is the radiative DD fusion rate of the photon emitting channel, which is given in [99] and shown
below. The fine structure constant is given by 𝛼 and 𝜏𝐴 is the acoustic phonon mode lifetime as a function
of the frequency of the mode, 𝑓𝐴.

Variables specific to this coupling are defined as follows [99]:

𝛼 = 𝑒2

4𝜋𝜖0ℏ𝑐 (95)

𝛾𝑟𝑎𝑑 = 6 × 10−8𝛾𝐷𝐷 (96)
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𝜏𝐴 = 10−12(10−7 𝑓𝐴
1 MHz)

−3/2
sec (97)

where 𝛾𝐷𝐷 is the rate formula in terms of the (unscreened) DD rate given by Koonin and Nauenberg 1989
[2].

Recall that the minimum rate (starting rate) is (Eq. 76)

Γ𝑚𝑖𝑛 = 2
ℏ2|1 − 𝜂| 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 √𝑁D2

𝑁4He (98)

Plugging in 𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 for 𝑉 2

𝑔𝑒𝑛 yields

Γ𝑚𝑖𝑛 = |1 − 𝜂| 3
𝛼𝑍2

(ℏ𝜔𝐴)2

(Δ𝑀𝑐2)2
√𝑀𝐷2

𝑀4𝐻𝑒𝑐2

Δ𝑀𝑐2
𝑃𝑑𝑖𝑠𝑠𝜏𝐴
Δ𝑀𝑐2

𝛾𝑟𝑎𝑑
𝛾𝐷𝐷

𝛾𝐷𝐷
√𝑁D2

𝑁4He

𝑁 (99)

Here, we take advantage of knowing the ratio 𝛾𝑟𝑎𝑑 to 𝛾𝐷𝐷 so we can express this rate formula in terms of
the (unscreened) DD rate, which allows for easy comparison. 𝛾𝐷𝐷 is given as (section S6.3):

𝛾𝐷𝐷 = 3 × 10−64𝑠−1 (100)

The above unscreened rate 𝛾𝐷𝐷 is consistent with the use of a Gamow factor of:

𝐺 = 90.4 (101)

which is appropriate for the 3P states considered for electric dipole coupling (see section S6.3).

To evaluate Γ𝑚𝑖𝑛, we need to consider all the relevant paraemters.

We choose experimentally plausible values for vibrational power dissipation and frequency applied to the
lattice as

𝑃𝑑𝑖𝑠𝑠 = 1 W 𝑓𝐴 = 5 MHz (102)

which gives a phonon lifetime of 𝜏𝐴 ≈ 0.003sec.
We use the same deuterium and helium loading values as for magnetic dipole coupling (see Eq. 82)

𝑁D2

𝑁 = 0.001 × 0.3 × 1
25

𝑁4He
𝑁 = 0.01 (103)

and the same loss correction factor |1 − 𝜂| = 0.1 as for magnetic dipole coupling (see Eq. 81).

Evaluating the rate expression based on the above values (using 𝑍 = 2) results in a minimum transfer rate
(unscreened) of

Γ𝑚𝑖𝑛,𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 3.39 × 10−94𝑠−1 (104)

Since we used the unscreened Gamow factor G above, we can consider the effects of screening by multiplying
with (per section S6.3)
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𝑒2Δ𝐺𝑠𝑐𝑟 (105)

where

Δ𝐺𝑠𝑐𝑟 = 49.2 (106)

accounts for electron screening of the 3P channel of the D2 nuclear wave function with 350 eV screening
potential (see section S6.3).

The screening factor per section S6.3 comes in twice here since screening affects the donor side transition as
well as the receiver side transition.

This results in

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 1.84 × 10−51 s−1 (107)

To obtain the maximum rate (peak rate of the Dicke enhancement pulse), we apply the additional Dicke
enhancement per section S5.2:

Γ𝑚𝑎𝑥 = Γ𝑚𝑖𝑛
1
4𝑁D2

(108)

For 𝑁D2
= 1015 this yields

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 4.6 × 10−37 s−1 (109)

Again, this is the population-level transfer rate, i.e., the rate at which the ensemble in group a transfer
excitation to the ensemble in group b. To obtain a rate per deuteron pair that is comparable to the estimate
given by Koonin and Nauenberg 1989 [2], we normalize the expression. Taking the Dicke-enhanced expression
we obtain

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 4.6 × 10−52 s−1 (110)

and

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 1.84 × 10−66 s−1 (111)

Similar to the previous subsection, this obtained rate estimate is neither in the observable range nor does it
appear to outcompete the spontaneous fusion rate.
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Relativistic coupling

In the same physical system as considered in the previous subsections (nuclei oscillating), a different inter-
action is expected to apply as well. Relativistic coupling results from the fact that oscillating nuclei in the
lattice undergo Lorentz transformations, which implies a coupling between center of mass motion and internal
nuclear degrees of freedom (see section S6.7 and [100] for more details about this coupling mechanism).

For relativistic coupling, the indirect coupling strength between a D2/4He donor transition (assumed to start
out in the excited state, i.e., as D2) and a D2/4He receiver transition (assumed to start out in the ground
state, i.e., as 4He) is

𝑈2
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = ⟨Φ4He|a|Φ4He⟩ ⋅ 𝑐2⟨P̂4𝐻𝑒P̂4𝐻𝑒⟩ ⋅ ⟨ΦD2

|a|Φ4He⟩ (112)

See section S6.15 for a derivation of the terms, which yields (here given for acoustic phonons)

𝑈2
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = (0.0362√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

2
𝑐2 √𝑀𝐷2

𝑀4𝐻𝑒
𝑁 𝑃𝑑𝑖𝑠𝑠𝜏𝐴 (113)

where the variables are the same as in prior subsections. Note that the masses 𝑀𝐷2
and 𝑀4𝐻𝑒 are essentially

the same as far as the phonons are concerned.

Recall that the minimum rate (starting rate) is (Eq. 76)

Γ𝑚𝑖𝑛 = 2
ℏ2|1 − 𝜂| 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 √𝑁D2

𝑁4He (114)

Plugging in 𝑈2
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 for 𝑉 2

𝑔𝑒𝑛 yields

Γ𝑚𝑖𝑛 = 4|1 − 𝜂|(0.0362√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)
2 √𝑀𝐷2

𝑀4𝐻𝑒𝑐2

Δ𝑀𝑐2
𝑃𝑑𝑖𝑠𝑠𝜏𝐴

ℏ
√𝑁D2

𝑁4He

𝑁 (115)

To evaluate this expression we need to consider the values of all relevant parameters. We take:

|1 − 𝜂| = 0.1 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.65 × 10−12 𝐺 = 90.35 (116)

where the volume ratio and the Gamow factor are for the 3P state and where |1 − 𝜂| is for the D2/3+1/4He
contribution to the D2/4He transition per section S6.5.

Moreover (per this section’s introduction):

𝑁D2

𝑁 = 0.001 × 0.25 × 1
9

𝑁4He
𝑁 = 0.01 (117)

where we assume a loaded lattice where every 1000th unit cell contains a D2 molecule and where 25% of the
D2 molecules are in the 3P state (see Figure S39 in section S6.1); with only one of the nine possible 3P states
(with 𝐽 = 1) being involved in the a ⋅ 𝑐P transition (see section S6.9 and S6.8); and where every 100th unit
cell contains a 4He nucleus.

We choose experimentally plausible values for vibrational power dissipation and frequency applied to the
lattice as
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𝑃𝑑𝑖𝑠𝑠 = 1 W 𝑓𝐴 = 5 MHz (118)

which gives a phonon lifetime of:

𝜏𝐴 = 10−12(10−7 𝑓𝐴
1 MHz)

−3/2
sec

≈ 0.003 sec (119)

Evaluating the rate expression based on the above values results in a minimum transfer rate (unscreened) of

Γ𝑚𝑖𝑛,𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 2.32 × 10−63 s−1 (120)

Since we used the unscreened Gamow factor G above, we can consider the effects of screening by multiplying
with (per section S6.3)

𝑒2Δ𝐺𝑠𝑐𝑟 (121)

where

Δ𝐺𝑠𝑐𝑟 = 49.2 (122)

accounts for electron screening of the 3P channel of the D2 nuclear wave function with 350 eV screening
potential (see section S6.3).

This results in

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 1.26 × 10−20 s−1 (123)

To obtain the maximum rate (peak rate of the Dicke enhancement pulse), we apply the additional Dicke
enhancement per section S5.2:

Γ𝑚𝑎𝑥 = Γ𝑚𝑖𝑛
1
4𝑁D2

(124)

For 𝑁D2
= 1015 this yields

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 3.15 × 10−6 s−1 (125)

Again, this is the population-level transfer rate, i.e., the rate at which the ensemble in group a transfer
excitation to the ensemble in group b. To obtain a rate per deuteron pair that is comparable to the estimate
given by Koonin and Nauenberg 1989 [2], we normalize the expression. Taking the Dicke-enhanced expression
we obtain

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 3.15 × 10−21 s−1 (126)
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Such a rate estimate means that this kind of excitation transfer would get into the observable range. Let us
therefore also consider the minimum rate per D2 to get a better sense of whether the process of time-evolving
Dicke factors from the minimum to the maximum rate has a chance to get started:

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 1.26 × 10−35 s−1 (127)

Several points can be noted here. We can see that the estimated transfer rate based on relativistic coupling
is substantially faster than the obtained rates for magnetic and electric dipole coupling. However, these
rates are still not in the observable range. While the maximum rate per deuteron pair outcompetes the
spontaneous rate from Koonin and Nauenberg 1989 [2] (see section S6.3), the minimum rate per deuteron
pair does not.

Note also that the time evolution of Dicke factors has to take place within the constraint of the decoherence
time of the system. We provide an estimate for the decoherence time in section S6.21, yielding a value of
about 1 ns.

Comparison of coupling strengths

The calculations in this section suggests that the maximum rate for cooperatively enhanced resonant excita-
tion transfer based on the relativistic a ⋅ 𝑐P interaction is orders of magnitude larger than what would be
expected from the d ⋅ E and 𝝁 ⋅ B interactions above.

However, all rates estimated in this section are below the observable range. As discussed in the introduction
and as can be seen from Eqs. 73 and 74 as well as Figure S14, a major hindrance factor is the transition
through the Coulomb barrier that occurs twice per each transfer (once for the D2 molecule tunneling inward
to the 4He state and once for the 4He nucleus tunneling apart to the D2 state). After this exercise, a faster
transfer that we consider to be relevant to experimental reports of observable rates will be considered in the
next section.
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S5.4 Pd nuclei as receiver systems

In addition to helium as receiver nuclei, as discussed in earlier sections, heavier lattice nuclei can be considered
as candidate receiver systems for the transfer of excitation from D2.

It is unlikely that such nuclei exhibit excited states precisely resonant with the D2/4He transition at
23,848,109 eV. However, several lower-energy transitions can be resonant with the D2/4He transition, as
will be discussed in detail in section S5.7 and the subsequent sections. Comparatively small energy differ-
ences can be made up via energy exchange with oscillator modes when the system first starts up. After the
system starts up, the receiver system will have more energy, so that states at higher energy (in the vicinity
of multiple D2/4He transition energies) can be accessed, where the density of nuclear molecule cluster states
can be high.

As will be discussed in section S5.10 in more detail, significant energy exchange with optical phonons and
plasmons looks to be possible under conditions where the density of states (including states from multiple
transitions) is high, and when the phonon mode (or plasmon mode) that is coupled to and emitted into is
highly excited.

This section provides an overview of nuclear excited states available in a Pd lattice, although most points
raised apply to other elements as well. Natural Pd contains six stable isotopes—102Pd, 104Pd, 105Pd, 106Pd,
108Pd, and 110Pd—so excited states from all these isotopes can be expected to be amply available in a Pd
lattice. When seeking to identify states suitable for nuclear excitation transfer dynamics in mid-sized nuclei
such as Pd, two categories of nuclear excited states are candidates that are discussed here. First, there are
nuclear bound states; and second, there are nuclear cluster states.

We will begin with an overview of nuclear bound states in Pd isotopes and then proceed with an overview
of nuclear cluster states, with a focus on nuclear molecule states, which represent a comparatively long-
lived subset of nuclear cluster states. This section concludes with a discussion of key properties that make
candidate excited states suitable as participants in nuclear excitation transfer dynamics.

Pd bound states

Nuclear bound states have been widely studied for many isotopes, with aggregated data on corresponding
energy levels, lifetimes, and transitions publicly available in nuclear databases such as NuDat. Known bound
states of the stable Pd nuclei from NuDat are shown in Figure S16. Above the neutron ionization threshold
(in the 7.0-10.5 MeV range, depending on the Pd isotope), the bound states are quite unstable against
neutron decay. Above the proton ionization threshold (in the 7.7-10.5 MeV range, again depending on the
isotope), the bound states become increasingly unstable against proton decay. Similarly, above the alpha
ionization threshold (in the 2.1-4.4 MeV range, depending on the isotope) the bound states are unstable
against alpha decay, again the more unstable the higher above the ionization energy. Proton, neutron and
alpha removal energies are tabulated in section S6.17.

The relativistic a ⋅ 𝑐P interaction is a tensor operator with magnetic quadrupole selection rules (see section
S6.8), and, when considering Pd nuclei as receiver systems for nuclear excitation transfer, we are interested
in Dicke enhanced transitions from the ground states of the stable Pd isotopes. If the energies, lifetimes
and multipolarities of transitions coupling to the ground state were available for all of the Pd bound states,
then we would be able to simply make use of the databases to compile nuclear data with which we could
analyze the excitation transfer schemes of interest. However, the datasets of nuclear bound states are not
complete. The density of nuclear bound states increases with energy, but the density of energy levels in the
canonical nuclear databases such as NuDat do not follow this expected relationship for levels above about 3
MeV. This is because at present techniques are lacking to study excited states efficiently and systematically.
In addition, there have been no important applications to motivate such studies until now.
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Figure S16: Known nuclear bound states for stable palladium (Pd) isotopes from the NuDat database.

The nuclear bound states of some isotopes have been studied more comprehensively than is the case with
the Pd isotopes to date. We draw attention to the bound states of 120Sn, as reported in [101]. An energy
level diagram is seen in Figure S17. Here we can see that, the density of states increases with energy, as
expected. This suggests that fewer states are missing from that dataset. Since the number of nucleons in
120Sn nuclei is similar to that in Pd isotopes, we can derive important lessons from the 120Sn dataset for Pd
nuclei, as will be laid out below.

Figure S17: Known nuclear bound states for the 120Sn (tin) isotope.
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Pd bound states with M2 transitions to the ground state

Nuclear level diagrams have been developed from experiments involving radioactive decay from neighboring
isotopes, and from experiments involving neutron, proton and alpha irradiation. Most of the transitions
between the ground states and excited states at a few MeV are electric quadrupole (E2) transitions, which
tend to yield large signals in accelerator-based measurement campaigns. There are fewer electric dipole (E1)
transitions, but these are generally easy to detect as well. The transitions of interest to us involve weaker
magnetic quadrupole (M2) coupling with the ground states, which tend to be excited less efficiently in a
collision. Moreover, M2 gamma lines tend to be weaker because electromagnetic quadrupole coupling in
radiative decay is a relatively weak higher-order effect. And as will become clear later on, we are interested
in weak M2 transitions, which are in general even easier to miss in an experiment. Consequently, it is likely
the case that the transitions that are of particular interest are severely undercounted in the databases.

M2 radiative decay

As will be discussed in more detailed in section S5.8, coherent nuclear dynamics are most efficient in the
case of excited states that are reasonably stable. This is the case because quantum coherence is degraded or
lost when an excited state decays. The coherent dynamics are fastest in the case of transitions that have a
stronger coupling. However, there is a trade-off. The strength of coupling relevant to the coherent dynamics
is proportional to the square root of the normalized transition strength

√
𝑂2, which can be expressed through

a dimensionless coupling constant

𝑉 ∼ 𝑂 (128)

whereas the spontaneous radiative decay rate is proportional to the normalized transition strength 𝑂2:

Γ𝑀2 ∼ 2.2 × 107 𝐴2/3 ( 𝜖
1 MeV)

5
𝑂2
Pd s−1 (129)

with Γ𝑀2 being the Weisskopf estimate scaled by the the transition strength which will discussed further
below.

For more background on the normalized transition strength 𝑂2, see section S5.8 and below.

Transitions that might be assumed to be particularly suitable for coherent dynamics in the model presented
here—due to their strong coupling strength—are also the transitions which will suffer the fastest radiative
loss. This competition between coherent and radiative dynamics, and its impact on nuclear excitation
transfer at large, will be discussed in greater detail in section S5.8.

To estimate how fast this radiative loss might be, we can make use of the Weisskopf estimate for radiative
decay. The Weisskopf estimate for radiative decay is grounded in the concept of single-particle transitions,
assuming that the transition matrix elements are primarily determined by the motion of a single nucleon. The
model incorporates basic assumptions about the nuclear structure, such as the spherical shape of the nucleus
and the use of harmonic oscillator wave functions for the nucleons. It calculates transition probabilities by
considering the multipolarity of the emitted radiation (e.g., electric dipole, quadrupole) and derives standard
transition rates for each type of multipole radiation.

Weisskopf estimates for the radiative decay rate for M2 transitions are shown in Figure S18 for the six stable
Pd isotopes. Later on we will make use of this estimate when determining the minimum excitation transfer
rates from the D2/4He transition needed to outpace decoherence processes and to get coherent dynamics
into a stable regime. This is in addition to an estimate for the D2 decoherence time, which is on the order of
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1 ns. Inspection of Figure S18 indicates that even though M2 transitions are not strong, if fully allowed, the
transitions are sufficiently fast so as to impact the coherent dynamics, when the transition energy exceeds 1
MeV. Given that there are very few M2 transitions at or below 1 MeV, this suggests that we are interested
in weak M2 transitions at higher energies.

Figure S18: Estimated lifetimes for fully allowed M2 transitions in the stable Pd isotopes.

As the name indicates, the Weisskopf estimate of a state’s lifetime is only an estimate. Actual lifetimes
depend on the particular dynamics of nucleons in a transition, which can go far beyond the comparatively
simple considerations underlying the Weisskopf estimate.

We capture the dynamics that the Weisskopf estimates fails to estimate in a normalized transition strength
𝑂2 that satisfies

𝑂2 ≈ Γ𝑎𝑐𝑡𝑢𝑎𝑙
Γ𝑊𝑒𝑖𝑠𝑠𝑘𝑜𝑝𝑓

(130)

With respect to relativistic coupling and associated transitions, the 𝑂-factor can be thought of as the square
root of the normalized M2 transition strength for the transition. Since our knowledge of how big these
transitions matrix elements are in the Pd isotopes is limited, we will express matrix elements and rates in
terms of 𝑂-values, so as to explicitly distinguish between transition-specific differences. Consequently, if a
transition is particularly weak—and it’s lifetime is underestimated by the Weisskopf estimate—its associated
𝑂-value would be ≪ 1.
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Data set for E1 transitions in 120Sn

In Müscher et al. (2022) [101], a list of 249 energy levels are given for 120Sn, along with estimates for the
associated electric dipole E1 transition strength.

We might expect there to be a similar distribution of levels and transition strengths for magnetic quadrupole
(M2) transitions in the stable Pd isotopes. We used the 120Sn data set in place of the stable Pd isotopes,
where we estimated transition strengths according to

𝐵𝐸(𝐸1) ↑ = 𝑂2𝑒2fm2 (131)

The resulting distribution of 𝑂-values and energies are shown in Figure S19.

Figure S19: Transition strength 𝑂-values extracted from Müscher et al. (2020).

Cluster-based nuclear molecule states

Earlier efforts to study the possibility of excitation transfer among excited nuclear states ran into difficulties
due to the lack of reasonably stable states near the deuterium-deuterium fusion transition energy at 23.85
MeV. A possible solution to this problem lied in the recognition that reasonably stable high-energy states
can form as so-called nuclear molecule states, a specific type of nuclear cluster states. In some metal-
hydrogen experiments, observations that suggest fission-like transmutation of lattice nuclei has been reported.
If coherent nuclear dynamics can result in the excitation of reasonably stable and highly-excited nuclear
molecule states, and if these nuclear molecule states decay by tunneling, that would represent the basis of a
possible explanation for such report.

This motivated the development of liquid drop model codes with which to calculate nuclear deformations,
leading to the realization that the models used for deformed nuclei in existing fission and fusion literatures
do not predict reasonably stable non-rotational nuclear molecules in the stable Pd isotopes. A solution to
this problem involves the notion of nuclear molecules based on clusters, where two or more clusters remain
nearly stationary at short range. In liquid drop models there is no significant potential barrier keeping
nuclear clusters apart, so one daughter can move into the other daughter easily in a binary nuclear molecule
in a liquid drop model calculation. However, in more sophisticated cluster models there is a barrier. This
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suggests the possibility of nuclear molecule cluster states in the Pd isotopes, where daughter parts of a
nucleus are held close to the parent by strong force interactions, but where a potential barrier prevents them
from coalescing.

In the literature, such nuclear cluster states have been considered in conjunction with 12C nuclei that can
form molecule-like states of 24Mg. Calculations done for such states suggest the existence of reasonably
stable nuclear molecule states that involve separated clusters, rather than extreme nuclear deformation. The
idea is that the daughters remain localized as separate units with essentially no net relative kinetic energy.
An illustration of a few cluster states in 24Mg from a recent paper of Adsley et al. (2022) [102] is shown in
Figure S20. Work so far on these states has focused on low mass nuclei, where relevant experimental data
exists. We conjecture that this kind of nuclear molecule cluster state also occurs in the Pd isotopes.

Figure S20: Level diagram for 12Mg depicting highly-excited (nuclear molecule) cluster states from Adsley et al. (2022) [102],
reproduced with permission. Note that the indicated level positions for the nuclear cluster states only include the mass energies,
with no inclusion of the binding energies which will be several MeV.

Nuclear cluster states are much less studied than nuclear bound states, and no comprehensive databases
exist. We were interested in understanding at what energies relevant nuclear cluster states might occur in
the Pd isotopes, and also how stable they might be against tunnel decay. For this, we developed a simple
model for binary nuclear cluster states that consist of spherical daughters with surfaces separated by 0.5
fm, with a total energy that corresponds to known mass energies from isotope mass tables, and with folded
Coulomb and strong force contributions from the finite range liquid drop model. This model is discussed
further in section S6.20.

Excited state energies predicted from the model are illustrated in Figure S21. The more symmetric nuclear
molecule cluster states generally appear at higher energy as a consequence of the large Coulomb repulsion,
with a substantial spread in energy due to differences in the individual cluster mass energies (highly un-
stable ground state Pd isotopes can have significant extra mass energy). At lower energies there are more
asymmetric binary clusters, including clusters of Rh + H isotopes, and Ru + He isotopes. For illustrative
purposes, we will refer to Ru + He states as exemplary nuclear molecule states later in this text.
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Figure S21: Molecular D2 and ground-state 4He levels along with (naive) non-rotational and non-vibrational binary nuclear
cluster states up to 70 MeV of the stable Pd isotopes.
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Figure S22: Distribution of nuclear molecule cluster state lifetimes by order of magnitude.

The model predicts more than 1000 non-rotational binary cluster states. The associated density of states as
a function of tunnel plus beta decay lifetime is shown in Figure S22. Note that many of these binary nuclear
molecule states are predicted to be quite stable against tunnel decay, with tunneling times well in excess of
1 second. In future work, we seek to refine such models and extend them so as to allow for the estimation
of a-matrix elements connecting these states to their ground states.

Simple forms of resonant excitation transfer require a precise energy match between the initial state transition
and a final state transition. More complicated generalized resonant excitation transfer requires a precise

53



energy match between a possible combination of initial state transitions and a possible combination of final
state transitions. Yet more complicated models of excitation transfer allow for energy exchange with the
oscillator—in our case plasmons and phonons—to make up for energy mismatch.

The interest in states with energy levels close to the energy of the donor transition, i.e., 23.85 MeV, motivates
an interest in nuclear molecule cluster states more complicated than binary clusters. Such variations of
nuclear molecule states offer many more configurations and therefore states in regions of interest. Most
easily visualized are binary nuclear molecule cluster states with two daughters. However, the concept extends
to more complicated ternary and tertiary nuclear molecule cluster states. A collection of different cluster
configurations is illustrated in Figure S23.

Figure S23: Ikeda diagram of nuclear cluster states of various isotopes from Lombardo and Aquila (2023) [103], reproduced
with permission.

Excited Pd∗ states and different nuclear excitation transfer schemes

The question is now what would be required to extend the notion of resonant nuclear excitation transfer–
as developed in S5.1, S5.2, and S5.3–to include Pd nuclei as receiver systems. The situation would be
conceptually simplest if all that was required was to find a reasonably stable highly-excited Pd∗ state that
is precisely matched to the D2/4He fusion mass energy. In that hypothetical case, the previously introduced
model of excitation transfer based on (simple) second-order excitation transfer could be employed, analogous
to the transfer of excitation from D2 to 4He, as considered in section S5.3.

In reality, however, present knowledge suggests that it is unlikely for a state to exist that is nearly resonant
with the donor transition of interest, the D2/4He transition with its 23.85 MeV energy difference. That
remains to be the case, even when tertiary and other higher level types of nuclear molecule configurations
are considered, which contribute to the density of states.

Consequently, a theory of nuclear excitation transfer, where the donor system is D2, needs to consider
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scenarios that are more complicated. Here, we will, in anticipation of later sections, focus attention and
aspects of nuclear excited states that are particularly relevant to the problem at hand.

In section S5.7 and onwards, we will describe a more complicated scheme in which excitation is transferred
from a single transition to multiple state transitions. This is an attractive prospect, because lower receiver
side state transition energies tend to correspond to slower M2 radiative decay. Moreover, with multiple
lower-energy states comes the possibility of combining states and the number of available combinations—
and therefore the implied density of states—grows rapidly with every state that can participate in such
combinations.

For this kind of scheme, we care a lot about M2 transitions among excited Pd∗ bound states. What is
currently impeding modeling efforts is the lack of comprehensive knowledge of bound state level energies,
lifetimes, and M2 transition strengths, which are needed for more precise predictions of dynamics under this
scheme. Consequently, the best option at present is to parameterize the transition strengths and work with
estimates for the density of M2 accessible levels.

In section S5.9, we estimate rates for transfer to multiple transitions. To anticipate findings discussed in
that section, the very high density of states that results from combinations of even a modest number of M2
transitions, suggests that the resonance condition can likely be met this way, especially when the system is in
the strong coupling regime—as we find is possible under realistic circumstances. While this is a model closer
to realistic conditions compared to previous idealizations, we find that unphysically extreme high power
transients would be required for transfer rates predicted by this version of the model to be in the observable
range.

We also consider an extension of the nuclear excitation transfer scheme presented above, where we include
energy exchange with uniform highly-excited vibrational or plasmon modes. Suppose that there is a Pd∗ state
sufficiently close that a precise resonance can be achieved with energy exchange. For example, according to
the simple nuclear molecule cluster state model, the closest binary cluster states to 23.85 MeV for excitation
from a stable Pd isotope (𝐴Pd) involves 𝐴−6Ru+6He binary cluster state. In this kind of scenario we can
imagine a resonant excitation transfer scheme based on

𝑀D2
𝑐2 − 𝑀4He𝑐2 = 𝑀∗

Pd𝑐2 − 𝑀Pd𝑐2 + Δ𝑛𝑃 ℏ𝜔𝑃 + Δ𝑛𝑂ℏ𝜔𝑂 + Δ𝑛𝐴ℏ𝜔𝐴 (132)

where 𝑃𝑑∗ = 𝑃𝑑∗
𝑅𝑢+6𝐻𝑒.

In S5.10, we will explore how such an additional feature of energy exchange with phonon and plasmon
modes affects excitation transfer rates, when considered in combination with the very high density of states
associated with combinations of bound states. If the system is able to make a generalized excitation transfer
from one transition to many transitions, starting from the D2/4He fusion transition, then it will be able
to make generalized excitation transfer transitions starting from a set of many transitions, and going to a
different set of many transitions (as long as all of the transitions are in the strong coupling regime, and
as long as the energies match). Such a system has the potential to exchange energy with optical phonons
and plasmons efficiently, as long as the magnitude of the relevant a ⋅ 𝑐P transition matrix elements for the
optical phonon transitions or plasmon transitions are greater than the average energy separation between
the associated multi-transition “states”.

This picture is not only conducive to high rates of nuclear excitation transfer that can outcompete decoherence
rates, it also has important implications for the reaction products that become observable from such a process.
Reaction products will be discussed in more detail in section S5.14, but we can anticipate already in this
section that repeated excitation transfer from sets of multiple transitions to other sets multiple transitions
can take place in a regime, where the density of states is so high (meV and smaller differences between
states) that the exchange of small amounts of excitation energy with a coupled phonon or plasmon mode
becomes possible along with every such excitation transfer. This is especially the case if the interaction is
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with a uniform optical phonon mode (or uniform plasmon mode) with substantial excitation (so that the
interaction is in the strong coupling regime with respect to the fine-splitting between the multi-transition
“states”).

This conjecture draws attention to the density of multi-transition “states” such that energy can be exchanged
efficiently. In this regime, when the total energy of a coupled system gets into the high-density-of-states region,
mass energy from additional D2/4He fusion transitions during the same coherence cycle has the potential to
be converted to optical phonon and plasmon energy as part of the repeated generalized excitation transfer
process.

Nuclear molecule states, with the exceptionally long lifetimes that many of them exhibit, also play an
important role in this picture. They may serve as natural endpoints with comparably high stability, where
a system arrives after repeated emission of energy into lattice modes. Over time, we conjecture this can
lead to the build up of large populations of particular nuclear molecule states, whose eventual decay—
through tunneling, i.e., fission, can account for reports of low-Z element production in certain metal-hydrogen
experiments.

Our interest in the Pd∗ bound excited states is ultimately focused on their contribution to the fine structure of
the spectrum of multi-transition states. Our interest in the Pd∗ nuclear molecule cluster states is ultimately
similarly focused on their contributions to the fine-structure of the multi-transition states, and to a lesser
degree in connection with low-level nuclear emission and low-Z element production.
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S5.5 Transfer rate estimates: D2 to Pd nuclei

Section S5.3 provided a first estimate for excitation transfer rates from D2 donor systems to 4He receiver
systems. It was found that under realistic experimental conditions, expected transfer rates would be unob-
servably low. Another key insight from that section was that relativistic coupling is significantly stronger—
and therefore more relevant for the processes under consideration here—than magnetic dipole coupling and
electric dipole coupling. In section S5.4 Pd nuclei were introduced as receiver systems and different kinds of
Pd excited states discussed.

We expect indirect coupling between the two transitions—D2/4He and Pd*/Pd—to work similarly to the
resonant excitation transfer model of section S5.2. Because of the comparatively high strength of relativistic
coupling–as seen in S5.3– we focus on the a ⋅ 𝑐P interaction for both transitions. We know that the magnetic
quadrupole (M2) of the a ⋅ 𝑐P interaction can provide for direct coupling between the D2

3P J=1,2 states
and the 4He state, so that the use of a direct matrix element is appropriate. We do not expect there to be
a significant direct coupling between the ground state of a Pd isotope and excited states (bound states or
cluster-based nuclear molecule states, e.g., a Ru+6He state. The direct matrix element would be hindered,
depending on what fractional admixture (superposition) of such clusters were already present as part of the
Pd isotope ground state.

Before getting to the actual rate estimates, we start with a discussion of notation, as small variations in
notation will become useful in later considerations.

Recalling the expression for the excitation transfer rate

The derivation of Dicke factors in S6.12 yields expressions for the minimum and maximum rate of excitation
transfer. Following Eq. 67 the minimum rate is

Γ𝑚𝑖𝑛 = |Ω𝑎𝑏|√𝑁D2
𝑁APd (133)

where Ω𝑎𝑏 refers to the generalized Rabi frequency for oscillating between the transitions in group a and b.

The generalized Rabi frequency is (Eq. 55)

1
2ℏ|Ω𝑎𝑏| = 𝑉 2

𝑔𝑒𝑛
Δ𝐸 = 𝑉 2

𝑔𝑒𝑛
Δ𝑀𝑐2 (134)

where again we add a subscript 𝑉𝑔𝑒𝑛, as previously done in Eq. 73, to differentiate referral to a generic
interaction from a concrete one.

The minimum rate with the corresponding Dicke factors is therefore:

Γ𝑚𝑖𝑛 = 2
ℏ

𝑉 2
𝑔𝑒𝑛

Δ𝑀𝑐2 √𝑁D2
𝑁APd (135)

In the case of transfer from D2 donors to 4He receivers, the transitions involved on the donor and receiver
sides are the same and so for 𝑉 2

𝑔𝑒𝑛 we had 𝑈2. For the case of transfer from D2 donors to Pd receivers, the
variable 𝑈 = 𝑈0𝑒−𝐺 denotes the coupling for the fusion transition and 𝑉 = 𝑉0𝑂𝑃𝑑 denotes the coupling for
the Pd transition (per the diagrams in Figs. S24 and S25) and for 𝑉 2

𝑔𝑒𝑛 we get 𝑈𝑉 .
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Figure S24: Resonant nuclear excitation transfer of 23.85 MeV from the D2 → 4He fusion decay to the APd → APd*
excitation, where the latter state is an exemplary case of APd*. Note that in actuality, this kind of excitation transfer process
involves pathways through different possible intermediate states, which exhibit an asymmetry in how they are affected by loss
(represented by 𝜂 in Fig. S25).

Figure S25: Resonant nuclear excitation transfer between a D2/4He decay transition and a (hypothetical) resonant Pd*/Pd
excitation transition by indirect coupling via a shared oscillator mode. Destructive interference between the upper and lower
intermediate (i.e., virtual) states is reduced by selective loss in the lower pathway, allowing for resonant nuclear excitation
transfer to occur (here represented by 𝜂 per sections S6.5 and S6.6).
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Note that Eq. 135 refers to the ideal loss case (see section S5.2). To account for realistic loss the correction
factor |1 − 𝜂| needs to be applied, resulting in:

Γ𝑚𝑖𝑛 = 2
ℏ|1 − 𝜂| 𝑈𝑉

Δ𝑀𝑐2 √𝑁D2
𝑁APd (136)

In section S5.3 we found that among the three couplings considered—magnetic coupling, electric coupling,
and relativistic coupling—relativistic coupling is the strongest, which is why we proceed focusing on rela-
tivistic coupling.

For relativistic coupling for the D2/4He transition (recall from Eq. S5.3):

𝑈 = |⟨D2|𝑎𝑧|4He⟩|𝑐√⟨𝑃 2
4He⟩ (137)

Equivalently, for the Pd*/Pd transition we have:

𝑉 = |⟨APd∗|𝑎𝑧|APd⟩|𝑐√⟨𝑃 2
APd⟩ (138)

Useful variations in notation

We can simplify the notation by pulling in the Dicke factors with the variables for the coupling strengths
according to (here exemplary for the minimum rate case)

𝒰 = 𝑈√𝑁D2
(139)

𝒱 = 𝑉 √𝑁APd (140)

resulting in

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|1 − 𝜂| 𝒰𝒱

Δ𝑀𝑐2 (141)

We can further simplify this notation by pulling in the correction factor with 𝑈 , resulting in

Δ𝑈 = |1 − 𝜂|𝑈 (142)

and

Δ𝒰 = |1 − 𝜂|𝒰 (143)

The notion of Δ𝑈 refers to the origin of that term as the difference between the two pathways in the diagram
in Figure S25, where one pathway is affected by loss and the other is not.

Finally, it will be useful to have normalized the coupling strength of a transition, such as 𝒱, by the transition
energy Δ𝐸 ≡ Δ𝑀𝑐2. This then results in dimensionless coupling parameter g:
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𝑔 = |𝒱|
Δ𝑀𝑐2 (144)

The result is a further simplification of the expression for the excitation transfer rate Eq. 135. It can be
alternatively written as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|Δ𝒰|𝑔 (145)

We expect perturbation theory to give good results for the weak coupling limit where 𝑔 ≪ 1. For the strong
coupling limit 𝑔 ≥ 1 we will need to implement a non-perturbative analysis to get reliable results. We will
consider the transition from weak coupling to strong coupling in section S5.6.

We will make use of this alternative notation later in the text since it will simplify a number of important
considerations. For now, we will return to the notation of Eq. 141 and proceed based on:

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|1 − 𝜂| 𝒰𝒱

Δ𝑀𝑐2 (146)

with the starting place being the version with minimum Dicke factors:

Γ𝑚𝑖𝑛 = 2
ℏ|1 − 𝜂| 𝑈𝑉

Δ𝑀𝑐2 √𝑁D2
𝑁APd (147)

First rate estimate for excitation transfer from D2 to Pd

The key difference to the rate estimates of section S5.3 is the interaction term, which is now 𝑈𝑉 instead of
𝑈2 due to the Pd*/Pd transition (coupling 𝑉 ) being different from the D2/4He transition (coupling 𝑈).

This gives an overall coupling strength for excitation transfer between a D2/4He transition and a Pd*/Pd
transition of:

(𝑈𝑉 )𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = ⟨Φ𝐷2
|a|Φ4He⟩ ⋅ 𝑐2⟨P̂4𝐻𝑒P̂𝐴𝑃𝑑⟩ ⋅ ⟨ΦAPd∗|a ⋅ ̂i𝑧|ΦAPd⟩ (148)

where (per section S6.15)

|⟨Φ𝐷2|a ⋅ ̂i𝑧|Φ4He⟩| ∼ ⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩

= 0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (149)

and (per section S6.16)

⟨ΦAPd∗|a ⋅ ̂i𝑧|ΦAPd⟩
= 2.6 × 10−5 𝑂 (150)

The idea here is that for a fully-allowed single nucleon transition at 23.85 MeV, we would expect the magni-
tude of the a-matrix element to be roughly 2.6 × 10−5. The 𝑂-factor can be thought of as the square root
of the normalized M2 transition strength for the transition. Since our knowledge of how big these transition
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matrix elements are in the Pd isotopes is limited, we will express matrix elements and rates in terms of
𝑂-values, keeping in mind that if the transition is weak that we would expect 𝑂 ≪ 1.
The above expression results in

(𝑈𝑉 )𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = (0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)√𝑀4He𝑀APd𝑐2

𝑁 𝑃𝑑𝑖𝑠𝑠𝜏(2.6 × 10−5 𝑂) (151)

Consequently, based on Eq. 147, the minimum transfer rate is:

Γ𝑚𝑖𝑛 = 2|1 − 𝜂|(0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)(2.6 × 10−5 𝑂)√𝑀4He𝑀APd𝑐2

Δ𝑀𝑐2
𝑃𝑑𝑖𝑠𝑠𝜏

ℏ
√𝑁D2

𝑁APd

𝑁 (152)

To evaluate this expression we need to consider the values of all relevant parameters. We take:

|1 − 𝜂| = 0.1 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.65 × 10−12 𝐺 = 90.35 (153)

where |1 − 𝜂| is for the D2/3+1/4He contribution to the D2/4He transition per section S6.5 and where the
volume ratio and the Gamow factor G take on the values determined in section S6.3.

For the 𝑂-value, we consider the following a realistic choice for the purpose of this section (although we will
provide a more detailed discussion of this parameter later in section S5.8):

𝑂 = 0.001 (154)

Moreover:

𝑁D2

𝑁 = 0.25 × 1
9

𝑁APd
𝑁 = 0.25 (155)

where we assume a highly loaded lattice with monovacancies where 25% of the D2 molecules are in the 3P
state (see Figure S39 in section S6.1); with only one of the 9 possible 3P states (with 𝐽 = 1) being involved
in the a ⋅ 𝑐P transition (see section S6.9 and S6.8); and where the natural abundance of the “average” Pd
isotope involved in the Pd∗/Pd transition is 0.25 (since we do not yet know exactly which Pd isotopes exhibit
best suited levels).

Note that these values for the number of donor side and receiver side systems per unit cell differ from those
used in section S5.3. Since we now consider Pd nuclei as receiver systems (instead of 4He nuclei), the 𝑁APd

𝑁
ratio is comparably high and the assumption that underlies the derivation of Dicke factors in section S5.2
(namely that the number of receiver systems exceeds the number of donor systems) is met. On the donor
side, the choice of 𝑁D2

𝑁 is motivated section in section S6.21.

For the mode characteristics, we choose experimentally plausible values for vibrational power dissipation and
frequency applied to the lattice as

𝑃𝑑𝑖𝑠𝑠 = 1 W 𝑓𝐴 = 5 MHz (156)

resulting in a 𝜏 (for acoustic phonons) of
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𝜏𝐴 = 10−12(10−7 𝑓𝐴
1 MHz)

−3/2
sec

≈ 0.003 sec (157)

Plugging in all of the above values results in a minimum transfer rate (unscreened) of

Γ𝑚𝑖𝑛,𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 4.79 × 10−22 s−1 (158)

Since we used the unscreened Gamow factor G above, we can consider the effects of screening by multiplying
with (per section S6.3)

𝑒Δ𝐺𝑠𝑐𝑟 (159)

where (for 350 eV screening potential; see section S6.3)

Δ𝐺𝑠𝑐𝑟 = 49.2 (160)

This results in

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 1.12 s−1 (161)

To obtain the maximum rate (peak rate of the Dicke enhancement pulse), we apply the additional Dicke
enhancement, as derived in section S5.2:

Γ𝑚𝑎𝑥 = Γ𝑚𝑖𝑛
1
4𝑁D2

(162)

For 𝑁D2
= 1015 this yields

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 = 2.79 × 1014 s−1 (163)

Again, this is the population-level transfer rate, i.e., the rate at which the ensemble in group a transfer
excitation to the ensemble in group b. To obtain a rate per deuteron pair that is comparable to the estimate
given by Koonin and Nauenberg 1989 [2], we normalize the expression. Taking the Dicke-enhanced expression
we obtain

Γ𝑚𝑎𝑥,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 0.28 s−1 (164)

Such a rate estimate means that this kind of excitation transfer would get into the observable range. Let us
therefore also consider the minimum rate per D2 to get a better sense of whether the process of time-evolving
Dicke factors from the minimum to the maximum rate has a chance to get started:

Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
𝑁D2

= 1.12 × 10−15 s−1 (165)
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Discussion

We find that in the given scenario, minimum (and maximum) rates are in the observable range. Note, however,
that we worked with an idealized model, which did not include dephasing, and which made assumptions about
the existence of a single resonant receiver states. A model that includes reasonable estimates for dephasing
would show no observable coherent effects due to this mechanisms. In later sections, we will consider more
realistic models.

Note that for the sake of simplicity, in this section we assumed comparatively low steady-state dissipated
power of 1 W. However, under realistic conditions, power can be expected to fluctuate. This means that
instead of having a fixed value of 𝑃𝑑𝑖𝑠𝑠 we can expect 𝑃𝑑𝑖𝑠𝑠(𝑡). We refer to the power maxima as high-power
transients. In the following sections, we will consider the effect of high-power transients on transfer rate
estimates and startup dynamics.

Note also that the time evolution of Dicke factors has to take place within the constraint of the decoherence
time of the system. We provided an estimate for the decoherence time in section S6.21, yielding a value of
about 1 ns.

Moreover, in the estimate above we assumed a value for the 𝑂-factor of 0.001. Since many transitions
in Pd isotopes (and other mid-sized nuclei) have not been identified and characterized, the existence of
transitions with a wide range of different 𝑂-values is conceivable, impacting rate estimates and startup
dynamics. Therefore, in addition to high-power transients, both the decoherence time and the 𝑂-values are
important constraints. Section S5.8 is dedicated to a discussion of such constraints.

Finally, we assumed in this section the existence of a hypothetical Pd state at 23.85 MeV that meets the
resonance condition for the D2/4He transition. However, as pointed out earlier, the existence of a single
state like that is highly unlikely. Section S5.7 contains a conjecture how the resonance condition can be met
alternatively given multi-state transitions to a combination of realistic Pd states.
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S5.6 The effect of high power transients in the lattice modes on excitation
transfer rates

In the previous section we obtained a first preliminary rate estimate for excitation transfer from D2 to Pd.

The resulting minimum rate for the ensemble was large compared to the rate of spontaneous fusion but still
small given a short decoherence time of about 1 ns. The estimated maximum rate is significantly higher but
with a minimum rate that is too slow, a system does not have enough time to evolve to the maximum rate.

At the same time, the assumption of 1 W of dissipated power in a phonon mode across the coherence domain
with cycles of about 3 ms is conservative. In this section, we consider the effect of occasional transients,
where for a short time there is high-power peak in vibrational power. However, to anticipate the results of
this section, we will find that in the present picture, the high-power transient requirements for observable
fusion rates are unphysically extreme.

Studying the effect of high power transients suggests evaluation of the rate expression Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 of Eq.
152 as a function of 𝑃𝑑𝑖𝑠𝑠.

Another variable of considerable uncertainty is the nuclear transition factor O, which is characteristic of the
Pd transitions involved.

To gain intuition about the dependence of the transfer rate on those two variables, the goal of this section
is the creation of contour plots that illuminate these relationships.

Testing for strong coupling

Before evaluating the transfer rate across a large parameters space of P and O values, we need to remind
ourselves that the previous calculations were based on perturbation theory, which assumes that the coupling
strength driving a transition is small compared to the transition energy. This relationship can be expressed
through a dimensionless coupling constant g.

If g is close to unity or larger, then a perturbation theory approach needs to be replaced by a strong coupling
approach. Since there are two transitions involved in the transfer from D2 to Pd, we ought to evaluate a
dimensional coupling constant for each. However, because the coupling strength for the fusion transition is
hindered by the Coulomb barrier, as represented by the 𝑒−𝐺 factor, the 𝑔 associated with the fusion transition
can be readily identified as ≪ 1 .

For the dimensionless coupling constant on the D2 side we have

𝑔D2/4He = 𝒰
Δ𝐸

=
|⟨D2|𝑎𝑧|4He⟩|𝑐√⟨𝑃 2

4He⟩√𝑁D2

Δ𝑀𝑐2 (166)

For the dimensionless coupling constant on the Pd side we have

𝑔𝑃𝑑∗/𝑃𝑑 = 𝒱
Δ𝐸

=
|⟨Pd∗|𝑎𝑧|Pd⟩|𝑐√⟨𝑃 2

Pd⟩√𝑁APd

Δ𝑀𝑐2 (167)

For simplicity we take
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𝑔 = 𝑔Pd∗/Pd (168)

and, following Eq. 145,

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|Δ𝒰|𝑔 (169)

We are now ready to plot g. Evaluating Eq. 168 yields (recall the derivation of the Pd matrix element in
section S6.16):

𝑔 =
|⟨Pd∗|𝑎𝑧|Pd⟩|√ 𝑀APd𝑐2𝑃𝑑𝑖𝑠𝑠𝜏𝐴

𝑁
Δ𝑀𝑐2 √𝑁APd

= |⟨Pd∗|𝑎𝑧|Pd⟩|√𝑀APd𝑐2(1 J)
Δ𝑀𝑐2

√𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁APd
𝑁

= 2.6 × 10−5 𝑂Pd
√𝑀APd𝑐2(1 J)

Δ𝑀𝑐2(1 J)
√𝑃𝑑𝑖𝑠𝑠𝜏𝐴

1 J
√𝑁APd

𝑁

= 865 𝑂Pd √𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁APd
𝑁

(170)

The result is shown in Figure S26.

Figure S26: Plot of the dimensionless coupling constant, 𝑔, for the Pd nuclei as a function of the transient dissipated acoustic
phonon energy (i.e., the product of the dissipated transient power and pulse period in the acoustic mode) and the Pd 𝑂-value.
The transition from a perturbative to a strongly coupled system is defined by g = 1 (red line) and the exemplary case of 0.003
J of dissipated energy from the acoustic phonon mode (dashed white line) and its intersection with a Pd*/Pd transition with
an 𝑂-value of 0.001 (white X mark) are shown.
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Figure S27: Plot of the minimum nuclear excitation transfer rate with 350 eV of electron screening (Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑) from the
D2/4He decay transition to the Pd*/Pd excitation transition as a function of the transient dissipated acoustic phonon energy
(i.e., the product of the dissipated transient power and pulse period in the acoustic mode) and the Pd 𝑂-value. The exemplary
case of 0.003 J of dissipated energy from the acoustic phonon mode (dashed white line) and its intersection with a Pd∗/Pd
transition with an 𝑂-value of 0.001 (white X mark) are shown.

Transfer rates with a crude extrapolation for the strong coupling regime

When 𝑔 is larger than unity, the relationship between 𝑔 and the transfer rate Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 can no longer be
considered linear. In the strong coupling limit the situation is more complicated as will be discussed in the
next section. Based on what we know so far, the predicted excitation transfer rates are slower than our
estimates for the decoherence and loss rates. What we will do here is a crude extrapolation based on

𝐹(𝑔) ∼ 𝑔
1 + 2𝑔 (171)

The idea is that at small values of 𝑔 this function will lead to results consistent with perturbation theory for
weak coupling. We have some experience with the indirect coupling matrix element for excitation transfer,
where one donor transition goes to two receiver transitions. In this model we see deviations from linearity
that kick in around 𝑔 = 1/2, which motivates in part the factor of 2g in the denominator. The numerical
results for the indirect coupling matrix element were crudely oscillatory in the 𝑔 values as they increased
above 𝑔 = 1. So the form of 𝐹(𝑔) was chosen to establish a very rough limit for larger 𝑔. In the future
there will need to be modeling done systematically for the indirect coupling matrix element in the strong
coupling regime for excitation transfer to different numbers of Pd∗/Pd transitions in order to develop accurate
predictions.

The relationship in Eq. 171 is shown in Figure S28.
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Figure S28: Comparison between linear scaling of normalised coupling constant (𝑔) and strong coupling extrapolation (𝐹(𝑔)).

The excitation transfer rate with this extrapolation in the strong coupling regime is then:

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 → 2
ℏ|Δ𝒰|𝐹(𝑔) (172)

After taking into account effects of entering the strong coupling regime this way, we can finally plot
Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 rates at high power transients (Figure S27).

It can be seen from Figure S27 that unphysically extreme high power transients would be required for transfer
rates to approach the observable range. In section S5.10, we will develop a more sophisticated version of the
model that is even less idealized and exhibits higher rates.

First, however, we will address the other key issue raised by section S5.5: meeting the resonance condition
beyond the hypothetical and unlikely Pd excited state at 23.85 MeV.
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S5.7 Transfer to multiple Pd transitions and meeting the resonance condition

In the sections above, we considered an idealized scenario in which the D2/4He transition of interest is
matched in energy to a hypothetical Pd∗/Pd transition where the Pd∗ state is stable enough to accommodate
coherent dynamics.

The notion of excitation transfer from one transition to a second transition is conceptually simple and easy to
analyze with perturbation theory when the coupling is weak. However, this simple model’s presupposition of
the existence of a single receiver state that is precisely resonant with the donor state can be readily challenged
and needs to be seen as an idealization on the way to a more realistic model. While far from all nuclear
excited states of common lattice nuclei are known, a single state that is so closely matched is unlikely to
exist.

For the resonance condition we can write

𝐸D2
− 𝐸4He = Δ𝑀𝑐2 = ∑

𝑗
(𝐸Pd∗ − 𝐸Pd)𝑗 (173)

The existence of a resonance with a single transition at 23.85 MeV can be seen as very unlikely because
candidate nuclear molecule states are separated by at least tens of keV. However, a receiver state can also
comprise several lower energy palladium transitions whose sum meets the resonance condition as depicted
in Figure S29. If combinations of available lower-energy states are considered, it is possible to get to within
a fraction of an eV of the sought resonance. The specifics here depend on the available density of states. We
provide an estimate based on related experimental data at the end of this section.

To make up residual energy mismatch, the system may need to exchange some phonons (preferably higher-
energy phonons). We will not include this aspect in the analysis at this point, so the model under consider-
ation will be an idealization that the resonance for excitation transfer is exact.

However, we will show in this section that excitation transfer can take place, in principle unmitigated to a
combination of multiple receiver states as long as the sum of those states meets the resonance condition.

If we define dimensionless coupling coefficients according to

𝑔1 = |𝒱1|
𝜖1

𝑔2 = |𝒱2|
𝜖2

𝑔3 = |𝒱3|
𝜖3

(174)

where 𝜖1, 𝜖2, and 𝜖3 represent the energies associated with different transitions in Pd nuclei,

then we can write

𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑓𝑖𝑛𝑎𝑙 = Δ𝒰𝑔1𝑔2𝑔3 (175)

and

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑓𝑖𝑛𝑎𝑙| = 2

ℏ|Δ𝒰|𝑔1𝑔2𝑔3 (176)

See section S6.23 for a detailed derivation.

Once again we expect these perturbation theory based expressions to be accurate when all of the dimension-
less coupling coefficients are much less than unity. A more extensive calculation is sought in the future to
get accurate indirect coupling coefficients and rates in the strong coupling regime.
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Figure S29: Weakly coupled nuclear excitation transfer from highly stable molecular D2 donors via the D2 → 4He transition
to a strongly coupled system of APd∗ bound state state acceptors via APd → APd∗ transitions.

Estimating the nuclear density of states based on related experimental data

We conclude this section with a brief discussion of the available density of states that results from combination
of Pd nuclear bound states.

No tables are available in the literature yet with these kinds of data. However, a table close to what we need
has been given for 120Sn by Müscher et al. (2022) [101], where results from a nuclear resonance fluorescence
experiment on 120Sn are reported (see section S5.4).

An estimate for the density of states, based on the experimental data by Müscher et al, which can be expected
to be similar for Pd isotopes, is developed in section S6.18. The key result is shown in Figure S30.

At the resonance condition of 23.85 MeV (more precisely: 23,848,109 eV), our estimated density of states is
171 states per eV. This implies that the closest nuclear state that results from a combination of lower energy
Pd transitions is withing a fraction of an eV.
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Figure S30: Result of the summing the density of states for combinations of one, two and three nuclear transitions, evaluated
with the 120Sn data set (and assumed to be relevant for all stable Pd isotopes).
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S5.8 Constraints on coherent dynamics from decoherence and loss channels

A critical question that needs to be addressed is the question how coherent dynamics start up initially.
Time evolution of the systems under consideration comprises two aspects: time evolution during a coherence
cycle and time evolution across coherence cycles. We refer to these dynamics as startup dynamics and post-
startup dynamics. This section is focused on startup dynamics. Post-startup dynamics will be discussed in
subsequent sections S5.13 and S5.14.

Startup refers to the process of getting from the minimum excitation transfer rate to a large enough rate
(via greater Dicke enhancement factors) to yield observable effects per the definition in section S1.1.

The discussion of startup dynamics is closely linked to the discussion of constraints. Besides needing enough
initial power in the system to develop large enough minimum transfer rates (section S5.2), key constraints
are the dephasing rates (i.e., decoherence rates) of the two involved transitions (donor transition and receiver
transition).

In this section, we develop a threshold condition based on the fundamental need for the excitation transfer
rate to be greater than the total dephasing rate for the two transitions. Ultimately, this is the essential
condition that needs to be met in order for the system to start up. The relationship between the achievable
transfer rate and the dominant decoherence times is affected by the power provided to the system and by
the nuclear transition factor of the Pd transitions involved. These variables are to be taken to span the
parameter space for the threshold condition.

The issue is to determine how much energy needs to be in the highly-excited acoustic vibrational mode in
order for the system to start up if it has an a-matrix element of a given strength.

Constraints

Coherence on the D2 molecule side is affected by spin-spin relaxation as well as the stability of deuteron
pairs—whereby the latter, with a value of about 1 ns, is significantly shorter than the former (see section
S6.22).

On the Pd side, the major competing process to coherent dynamics is radiative decay of the states involved.
This is not the case on the donor side since a D2 molecule can be viewed as a highly metastable excited state
of 4He. However, on the receiver side, in the Pd receiver scenario, the nuclear states tend to be short-lived
and the coherent dynamics need to outpace them, if they are to be dominant.

For Pd bound states, state lifetimes can be estimated by the Weisskopf estimate. We expect that a transition
that has a strong a ⋅ 𝑐P coupling strength will also be able to radiatively decay. For this we will make use
of the M2 Weisskopf estimate scaled by 𝑂2

Pd (also see the related discussion in section S5.4):

Γ𝑀2 ∼ 2.2 × 107 𝐴2/3 ( Δ𝑀𝑐2

1 MeV)
5

𝑂2
Pd s−1 (177)

We evaluate it to obtain

Γ𝑀2 ∼ 3.8 × 1015 𝑂2
Pd s−1 (178)

Per the discussion in S6.22, we adopt a dissociation time for the D2 molecule of

𝜏D2
∼ 1 ns (179)
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Figure S31: Plot of the minimum nuclear excitation transfer rate with 350 eV of electron screening (Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑) from the
D2/4He decay transition to the Pd*/Pd excitation transition as a function of the transient dissipated acoustic phonon energy
(i.e., the product of the dissipated transient power and pulse period in the acoustic mode) and the Pd 𝑂-value. The greyed out
area represents rates that don’t meet the minimum requirements determined by decoherence, i.e., Eq. 180.

In order for the coherent dynamics to get started, we require that the excitation transfer rate exceed the
decoherence rate

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ≥ Γ𝑑𝑒𝑐𝑜ℎ → Γ𝑀2 + 1
𝜏D2

(180)

Result and discussion

The results of this analysis are shown in Figure S31, where contours of the excitation transfer rate are shown
as a function of acoustic energy 𝑃𝑑𝑖𝑠𝑠𝜏𝐴 and the Pd∗/Pd transition 𝑂Pd value in the allowed part of the
parameter regime where the excitation transfer rate exceeds the model decoherence rate. We’ve also used
the same deuterium and palladium loading as in previous sections when calculating the rates, namely:

𝑁D2

𝑁 = 0.25 × 1
9

𝑁APd
𝑁 = 0.25 (181)

We see that it is possible within this idealized model for the coherent dynamics to start up; however, the
amount of energy in the highly-excited acoustic mode is impractically large.

For this calculation we assumed the same model parameters as in the transfer rate calculation in section
S5.5 based on Eq. 152.

A key driver of the high energy requirement in this scenario is the issue that the magnetic quadrupole (M2)
radiative decay is very fast at 23.85 MeV if the transition is strong (meaning that it has a large 𝑂Pd value,
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which makes for a fast transfer rate but also fuels the competing decay). To reduce the radiative decay rate,
the system needs to work with a “small” 𝑂Pd value so as to be affected by a more modest radiative decay
rate. However, if the 𝑂Pd value is “small”, the excitation transfer rate yielded from the expression in Eq.
152 is reduced. This in turn drives up the requirement for the acoustic energy needed in order to obtain
an excitation transfer rate that exceeds the model decoherence rate (which is the sum of the Pd∗ radiative
decay rate and molecular D2 dissociation rate).

It is clear that this model does not connect well with reports of observable fusion in metal-hydrogen exper-
iments with low-energy stimulation. In such experiments, orders of magnitude less energy than suggested
in this section is reported to be involved, prompting the exploration of alternative schemes with reduced
energy requirements. The basic issue that this model faces is that the magnetic quadrupole radiative decay
rate scales as the fifth power of the transition energy, which means that the associated decay rate is very
fast up at 23.85 MeV. This leads to a competition between the excitation transfer rate (which scales linearly
in 𝑂Pd) and the radiative decay rate (which scales as the square of 𝑂Pd), which ends up driving the system
to a low 𝑂Pd value and consequently extremely large acoustic energy.

A solution is sketched out in the following section: transferring energy from the D2 donor system to a
combination of lower-energy transitions on the Pd side not only provides a more realistic scenario to meet
the resonance condition, it also helps avoiding unstable high-energy states with very fast radiative decay.
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S5.9 Transfer rate estimates: D2 to multiple Pd transitions

Here we present a possible solution to the challenges associated with the start-up problem, as discussed in
section S5.8. We already introduced in section S5.7 the proposal to transfer excitation from the D2/4He
fusion transition to many transitions at lower energy (in our case in Pd nuclei). The approach has been
motivated by its impact on the resonance condition, since combinations of transitions are much more likely
to come close to the resonance conditions compared to a single transition.

There is another critical aspect to a model involving multiple receiver transitions that will be covered in this
section: transferring to multiple transitions can improve startup dynamics through decreased competing loss
channels. In the case of multiple lower-energy transitions on the receiver side of nuclear excitation transfer,
the excited states produced tend to have a slower magnetic quadrupole (M2) decay rate (see the Weisskopf
estimate for state lifetimes described in sections S5.4 and S5.8). We will explore this aspect and related
aspects in some detail below.

In the notation of previous sections we start with

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|Δ𝒰| ∏

𝑗
𝑔𝑗 (182)

as the result from perturbation theory for excitation transfer to one, two and three transitions (see section
S6.23). As before, we expect this to work best, when the dimensionless coupling constants 𝑔𝑗 are less than
unity. In the strong coupling regime, however, a more sophisticated analysis is needed to get accurate results.
In order to develop estimates for the strong coupling regime, we assume that the excitation transfer rate
gets larger according to

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 → 2
ℏ|Δ𝒰| ∏

𝑗
𝐹(𝑔𝑗) (183)

again with

𝐹(𝑔) ∼ 𝑔
1 + 2𝑔 (184)

per section S5.6 (Eq. 171).

Nuclear data on excited states of Pd in the relevant energy levels at the MeV range is incomplete and many
states have not been identified and characterized. Nevertheless, we can assume the existence of further M2
bound states, based on the confirmed existence of some such states, parameterize them and get some insight
as to what the associated parameter space would look like.

M2 states among Pd bound states

In the argument presented here we assume that 𝑛 reasonably strong and reasonably stable bound states are
available with energies in the general vicinity of

𝜖𝑗 → 𝜖 = Δ𝑀𝑐2

𝑛 = 23.85 MeV
𝑛 = 2.98 MeV (185)

for the special case of
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𝑛 = 8 (186)

We will also assume that the different 𝑔𝑗 values are in the vicinity of a single average 𝑔 parameter

𝑔𝑗 → 𝑔 (187)

The goal is the development of a first estimate for excitation of 𝑛 distinct transitions, but model all of the
different transitions based on average transition parameters.

Excitation transfer rate

For the excitation transfer rate from D2 donor transitions to multiple Pd receiver transitions we work with

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 → 2
ℏ|Δ𝒰|(𝐹(𝑔))

𝑛
(188)

with

|Δ𝒰| = |1 − 𝜂||⟨D2|𝑎𝑧|4He⟩|𝑐√⟨𝑃 2
4He⟩√𝑁D2

(189)

where the ⟨D2|a|4He⟩ matrix element is the “ideal” no loss matrix element, and where |1 − 𝜂| takes into
account the fraction of the “ideal” single path excitation transfer rate that we get due to the effect of the
initial state fusion decay.

For the (average) dimensionless coupling constant we have

𝑔 =
|⟨Pd∗|𝑎𝑧|Pd⟩|𝑐√⟨𝑃 2

Pd⟩
𝜖 √𝑁APd (190)

where it should be noted that |⟨Pd∗|𝑎𝑧|Pd⟩| depends on the energy of the transition 𝜖 (see Eq. 469).

We can develop numerical estimates for the quantities that appear in the excitation transfer rate. For the
contribution of the fusion transition we can write

2
ℏ|Δ𝒰| = 2|1 − 𝜂||⟨D2|𝑎𝑧|4He⟩|√𝑀4𝐻𝑒𝑐2(1 J)

ℏ
√𝑃𝑑𝑖𝑠𝑠𝜏𝐴

1 J
√𝑁D2

𝑁

= 2|1 − 𝜂|0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 √𝑀4𝐻𝑒𝑐2(1 J)
ℏ

√𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁D2

𝑁 (191)

To evaluate the expressions above, we use the same values for the parameters as we did in previous sections,
namely:

|1 − 𝜂| = 0.1 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.65 × 10−12 𝐺 = 90.4 (192)

The expression for Δ𝒰 evaluates to
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2
ℏ|Δ𝒰| = 2.38 × 10−18 √𝑃𝑑𝑖𝑠𝑠𝜏𝐴

1 J
√𝑁D2

𝑁 s−1 (193)

Since we used the unscreened Gamow factor G above, we can consider the effects of screening by multiplying
with (per section S6.3)

𝑒Δ𝐺𝑠𝑐𝑟 (194)

where (for 350 eV screening potential; see section S6.3)

Δ𝐺𝑠𝑐𝑟 = 49.2 (195)

This gives us

2
ℏ|Δ𝒰| = 5536√𝑃𝑑𝑖𝑠𝑠𝜏𝐴

1 J
√𝑁D2

𝑁 s−1 (196)

Because the “bare” excitation transfer rate is so “slow”, the system greatly benefits from being in the strong
coupling regime, where it can obtain a sufficiently large rate increase needed for start up dynamics to kick
off.

For the dimensionless coupling constant, because |⟨Pd∗|𝑎𝑧|Pd⟩| is proportional to the energy of the transition
(see Eq. 469) we can make use of the same expression from Eq. 170, namely

𝑔 = 865 𝑂Pd √𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁APd
𝑁

(197)

Constraints

Pd∗ radiative decay

We expect that a transition that has a strong a ⋅ 𝑐P coupling strength—as indicated by a large 𝑂-value—
will also be able to radiatively decay comparatively fast. To estimate this decay we make use of the M2
Weisskopf estimate scaled by 𝑂2

Pd. We estimate

Γ𝑀2 ∼ 2.2 × 107 𝐴2/3 ( 𝜖
1 MeV)

5
𝑂2
Pd s−1 (198)

We evaluate it to obtain

Γ𝑀2 ∼ 1.16 × 1011 𝑂2
Pd s−1 (199)

Molecular D2 dissociation

We again adopt for the molecular D2 dissociation time

𝜏D2
∼ 1 ns (200)
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Figure S32: Plot of the minimum nuclear excitation transfer rate with 350 eV of electron screening (Γ𝑚𝑖𝑛,𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑) from the
D2/4He decay transition to the Pd*/Pd excitation transition as a function of the transient dissipated acoustic phonon energy
(i.e., the product of the dissipated transient power and pulse period in the acoustic mode) and the Pd 𝑂-value. The greyed out
area represents rates that do not meet the minimum requirements determined by decoherence, i.e., Eq. 201.

Fundamental constraint

As before we require that the excitation transfer rate exceed the decoherence rate

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ≥ Γ𝑑𝑒𝑐𝑜ℎ → Γ𝑀2 + 1
𝜏D2

(201)

Result and discussion

The results of this analysis are shown in Figure S32, where excitation transfer rates are shown as a function
of acoustic energy 𝑃𝑑𝑖𝑠𝑠𝜏𝐴 and the 𝑂-value of the Pd∗/Pd transition in the allowed part of the parameter
regime where the excitation transfer rate exceeds the model decoherence rate. We’ve also used the same
deuterium and palladium loading as in previous sections when calculating the rates, namely:

𝑁D2

𝑁 = 0.25 × 1
9

𝑁APd
𝑁 = 0.25 (202)

We see that it is possible within this idealized model for the coherent dynamics to start up; however, the
amount of energy in the highly-excited acoustic mode is impractically large.

For these rate calculations we assumed the same model parameters as in the transfer rate calculation in
section S5.5 based on Eq. 152.

We point out that, after a considerable buildup with pedagogical but idealized examples in sections S5.3 and
S5.5, we have arrived at a scheme in this section that comes closer to real physical systems expected to show
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observable effects. The approach explored in this section addresses issues such as the resonance condition
and the constraints imposed by decoherence. The rates are, however, still not in the observable range, when
considering real-world conditions.

We will explore another variant of the presented models in the following section, which is yet more complex
but which yields results that suggest rates in the observable range under realistic assumptions.
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S5.10 Excitation transfer between D2 and multiple receiver states

The structure of this document has been such that from S5.1 onwards, our goal has been to simplify the
comprehensive and overbearingly rich lattice Hamiltonian in Eq. 15 so as to make things conceptually and
computationally tractable.

This resulted in a first concrete example comprising excitation transfer from D2 to 4He systems, a hypothetical
scenario that involves a single perfectly resonant receiver state. While this example is straightforward to
follow and yielded concrete rate estimates, it appears not directly relevant to experiments, since all predicted
rates ended up in the unobservable range. Subsequently, we considered more complicated variations of the
basic model: first, a different nuclear species as a receiver system in section S5.4 (focusing on Pd excited
states), and then a combination of multiple lower-energy (but therefore also longer-lived) receiver transitions
in section S5.9. In other words, we considered the possibility of multiple Pd transitions, including from
multiple Pd nuclei, to combine.

Up to that point, we considered scenarios with a single receiver state (see Figure S33) – in the example with
multiple Pd transitions, the single receiver state was the one closest to the resonance condition. However,
they still suffered from certain unrealistic or incomplete assumptions and the need for extreme conditions
(e.g., regarding the required input energy).

Here, we will go one step further and consider the effects of multiple receiver states (see Figure S34). Multiple
receiver states come into view when considering the high density of nuclear states that results from combi-
nations of nuclear bound states (per the discussion in section S5.9). Note the difference between multiple
receiver states (which can involve multiple transitions) and multiple transitions but a single receiver state
(as was discussed in section S6.23).

Even more candidate receiver states become available when considering energy exchange with the lattice
and resulting mixed nuclear-lattice states —which originally we deliberately excluded in section S5.1 to keep
things simple at the beginning. We will bring energy exchange back in in the following section (see Figure
S34 bottom for a preview of the implications).
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Figure S33: Overview of different single-receiver-state variants of the excitation transfer models discussed in this document:
section S5.3 considered transfer from a D2/4He donor transition to a perfectly resonant D2/4He receiver transition but found
that transfer rates were too low to yield observable results (top part); section S5.5 considered transfer to a single hypothetical
Pd*/Pd receiver transition, where transfer rates are faster, but where perfect resonance was (unrealistically) assumed (middle
part); section S5.9 considered transfer to multiple Pd*/Pd receiver transitions, where resonance can be realistically assumed
to result from the high density of states due to combinations of nuclear bound states (bottom part). Note, however, that for
single-receiver-state variants of the model, only the state closest to the resonance condition is considered as a receiver state.
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Figure S34: Overview of different multiple-receiver-state variants of the excitation transfer models discussed in this document:
this section considers transfer from a D2/4He donor transition to multiple Pd*/Pd receiver transitions but—in contrast to
section S5.9 (see the bottom part of Figure S33)—makes use of a formalism where the transfer rate calculation takes multiple
possible receiver states into account (top part of the figure); the following section S5.11 goes one step further and includes
phonon absorption and emission in the consideration, which effectively corresponds to a further increase in the density of
receiver states (bottom part of the figure).
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Golden Rule formula for excitation transfer to multiple receiver states

In the previous sections, we made use of a rate expression for transfer to a single receiver state. The general
form of such a rate is

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∼ 2
ℏ|𝑉𝑓𝑖| (203)

When dealing with multiple receiver states, we need to make use of the so-called Golden Rule, which is often
written as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2𝜋
ℏ |𝑉𝑓𝑖|2𝜌 (204)

which we recognize as Dirac’s formula [104]; where 𝑉𝑓𝑖 is the interaction matrix element and where 𝜌 is the
relevant density of states.

This formula is sometimes expressed as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2𝜋
ℏ ∑

𝑓
|𝑉𝑓𝑖|2𝛿(𝐸𝑖 − 𝐸𝑓) (205)

which indicates a summation/integration over all of the final states, where the 𝛿-function imposes energy
conservation and gives rise to the density of states in Dirac’s formula. In this way of thinking, we can identify
∑𝑓 𝛿(𝐸𝑖 − 𝐸𝑓) with the density states 𝜌.

The impact of multiple receiver states

With the model of receiver states comprising multiple nuclear bound state transitions (in our case Pd
transitions) from Eq. 183 the excitation transfer rate becomes

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = 2𝜋
ℏ ∑

𝑓
|Δ𝒰|2( ∏ 𝐹(𝑔))

2

𝑓
𝛿(𝐸 − 𝐸𝑓) (206)

where the product considers the combinations of multiple Pd transitions and the sum considers the different
receiver states.

Recall that |Δ𝒰|2 represents the fusion transition affected by selective loss (S5.1). Since |Δ𝒰|2 is independent
of the final state nuclear configuration, it can be pulled out from the summation and rewritten as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = (2𝜋
ℏ |Δ𝒰|2)( ∑

𝑓
( ∏ 𝐹(𝑔))

2

𝑓
𝛿(𝐸 − 𝐸𝑓)) (207)

In this form, the Golden Rule rate is expressed as the product of the fusion transition rate 2𝜋
ℏ |Δ𝒰|2 and a

term ∑𝑓 ( ∏ 𝐹(𝑔))
2

𝑓
𝛿(𝐸 − 𝐸𝑓). That term is essentially an effective density of states, which we call the

generalized density of states ̃𝜌𝑁(𝐸). The generalized density of states includes all the possible transitions on
the receiver side. We can define
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̃𝜌𝑁(𝐸) = ∑
𝑓

( ∏ 𝐹(𝑔))
2

𝑓
𝛿(𝐸 − 𝐸𝑓) (208)

where we identify ∑𝑓 𝛿(𝐸 − 𝐸𝑓) with the density of nuclear transitions 𝜌𝑁(𝐸).
Note that the generalized density of states depends on (via the 𝑔 terms) the energy in the phonon modes
𝐸𝐴 = 𝑃𝑑𝑖𝑠𝑠𝜏𝐴 (see Eq. 197)

With this definition, the excitation transfer rate for transfer to multiple resonant receiver states can be
expressed as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = (2𝜋
ℏ |Δ𝒰|2) ̃𝜌𝑁(𝐸) (209)

Since the energy transferred from the fusion transition is 𝐸 = Δ𝑀𝑐2 = 23.85 MeV, the excitation transfer
rate that we are interested in is Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(Δ𝑀𝑐2) = Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(23.85 MeV).

Estimating the generalized density of states based on related experimental data

At this point we have an outline of a Golden Rule calculation than can be evaluated based on a list of energy
levels for excited states of the Pd isotopes, along with M2 transition strength data for transitions to the
ground state (𝑂-values per section S5.4).

No such data sets are presently available for Pd, but in section S5.7 above, we have introduced an estimated
nuclear density of states for combinations of Pd transitions based on data for 120Sn by Müscher et al. (2022)
in [101], where results from a nuclear resonance fluorescence experiment on 120Sn are reported (see section
S5.4 for more details on this data set). We have argued that such data is closely related to our problem and
can stand in as a proxy for the time being.

Analogous to the nuclear density of states developed in section S6.18, an estimate for the generalized density
of states is developed in section S6.19 based on the data from Müscher et al. (2022) [101]. Developing such
an estimate is non-trivial. We found that the density of states—and the generalized density of states—can be
approximated by a Gaussian and the resulting overall estimate is a sum of Gaussians for different numbers
of combinations of states:

̃𝜌𝑁(𝐸) = ∑
𝑚

𝐴𝑚
1

√2𝜋𝜎2𝑚
𝑒−(𝐸−𝜇𝑚)2/2𝜎2

𝑚 (210)

Each successive Gaussian in the sum represents the contribution to the generalized density of states from
one, two, three, etc. nuclear transitions.

Note that ̃𝜌𝑁(𝐸) has a dependence on 𝐸𝐴, i.e., the larger the oscillator energy (acoustic phonon energy in the
specific case considered here), the higher the effective density of states (see section S6.19 for an explanation
of the 𝐸𝐴 dependence). So ̃𝜌𝑁(𝐸) is really ̃𝜌𝑁(𝐸, 𝐸𝐴).
This 𝐸𝐴 dependence can be seen in Figure S35 at the fixed value of E that is of most interest, namely the
the deuterium fusion transition energy 𝐸 = Δ𝑀𝑐2 = 23.85 MeV.
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Figure S35: Generalized nuclear density of states ̃𝜌𝑁 (𝐸𝐴) at 𝐸 = 23.85 MeV.

Excitation transfer rate to multiple receiver states with no significant oscillator energy ex-
change

In this section, we are interested in the excitation transfer rate to multiple receiver states including only the
nuclear contribution to receiver states, i.e., in the absence of energy exchange with phonons and plasmons
(which results in additional receiver states per Figure S34 and which will be discussed in the following section).
Since this base rate plays such an important role in the model, we denote it as Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, and write it as

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2𝜋

ℏ |Δ𝒰|2 ∑
𝑓

( ∏ 𝐹(𝑔))
2

𝑓
𝛿(Δ𝑀𝑐2 − 𝐸𝑓) = 2𝜋

ℏ |Δ𝒰|2 ̃𝜌𝑁(Δ𝑀𝑐2) (211)

It is useful to develop a numerical estimate for this rate. We recall from Eq. 196 that (for a screening energy
of 𝑈𝑒 = 350 eV)

2
ℏ|Δ𝒰| = 5536√𝐸𝐴

1 J
√𝑁𝐷2

𝑁 s−1 (212)

We can use this to obtain

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = 7.76 × 10−5 (𝐸𝐴

1 J)(𝑁𝐷2
𝑁 )( ̃𝜌𝑁(𝐸)

̃𝜌(0)
𝑁

) s−1 (213)

where

̃𝜌(0)
𝑁 = ̃𝜌𝑁(Δ𝑀𝑐2)∣

𝐸𝐴=1 J
→ 2451 eV−1 (214)

84



Figure S36 shows Eq. 213 evaluated at different values of 𝐸𝐴 and 𝐸. The excitation transfer rate to multiple
nuclear receiver states in the absence of energy exchange with phonons and plasmons is still lower than the
estimated decoherence rate (see section S6.22).

However, note the exponentially increasing dependence on the transferred energy E when 𝐸𝐴 is above about
10 𝜇J: if the energies involved in the transfer were larger, the rates could be faster. This is due to the much
larger number of combinations of nuclear transitions available if more energy were available from the donor
transition.

On first glance, this relationship does not appear to be of much help, since we work with a donor system
at a fixed energy of 23.85 MeV, i.e., the deuterium fusion transition energy. However, as we will see in the
following section, it is possible to take advantage of this scaling relationship in other ways: if additional
energy comes into the Pd system from elsewhere, it is possible to operate at a higher operating point. In
the following section, we will show that energy can exchange rapidly between nuclear states and oscillator
modes, resulting in a nonzero probability that the Pd nuclei are in a state of overall higher energy.

Figure S36: Excitation transfer rate to multiple receiver states from the D2/4He fusion transition with no oscillator energy
exchange for several acoustic phonon mode energies 𝐸𝐴.
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S5.11 Excitation transfer between D2 and multiple receiver states with oscilla-
tor energy exchange

In the previous section, we introduced the notion of multiple receiver states and we developed a formalism,
based on the Golden Rule, that resulted in a corresponding transfer rate equation (Eq. 211). A model that
considers multiple receiver states is found to be more appropriate than a model that considers only single
receiver states, given the high density of states near the resonance condition that results from the many
possible combinations of nuclear bound states.

After having initially emphasized simplification of the comprehensive lattice Hamiltonian in section S5.1, we
now allow for yet more complex (and at the same time more realistic) models in this section. Specifically,
we now allow for energy exchange with the phonon modes or plasmon modes on top of the multiple receiver
state model of the previous section. Note that in that context the transfer rate equation, Eq. 211 is the base
rate against which rates that result from different extents of oscillator energy exchange can be compared.

Including energy exchange with oscillator modes makes the corresponding theoretical problem more difficult.
A technical discussion of the model under consideration is given in section S6.24, where the basic approach
and model is discussed. The excitation transfer rate from the fusion transition to many Pd∗/Pd transitions
with energy exchange with the oscillators is then given in terms of matrix elements of an approximation to
the finite time transition matrix element.

In this section we step through the key issues and develop a simple approximate expression for the excitation
transfer rate as a convolution of the generalized excitation transfer rate without oscillator exchange (Eq.
211) and the probability distributions for energy exchange with oscillators. The following section will then
contain a quantitative evaluation of this rate expression that allows for ready comparison with rate estimates
from earlier, simpler versions of the model.

Hamiltonian for energy exchange with the lattice

As we are now concerned with energy exchange with the lattice, which will involve the net exchange of
oscillator quanta, we need to make use of a Hamiltonian with nuclear degrees of freedom coupled to oscillator
degrees of freedom.

Similar to what was done in section S5.1, we start out with a comprehensive Hamiltonian analogous to Eq.
15 (in this case not including magnons as we also did later in section S5.1 for simplicity):

�̂� = �̂�𝑛𝑢𝑐𝑙𝑒𝑖 + �̂�𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + �̂�𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 (215)

We include selective loss in the Hamiltonian for the nuclei, per section S5.2 and for the interaction part, we
focus on the relativistic interaction as it has been shown to be the strongest among the relevant interactions
(S5.3).

This results in the Hamiltonian

�̂� = ∑
𝑗

∑
𝑘

{|𝜙𝑗⟩(𝑀𝑗𝑐2 − 𝑖ℏ
2 𝛾𝑗(𝐸))⟨𝜙𝑗|}

𝑘
+ ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

+ ∑
𝑗,𝑗′

∑
𝑘

{|𝜙𝑗′⟩⟨𝜙𝑗′ |a ⋅ 𝑐P̂𝑗|𝜙𝑗⟩⟨𝜙𝑗|}
𝑘

(216)

The equation contains terms for the mass energy and decay rates for the excited nuclear states; we also
include a uniform acoustic phonon mode, a uniform optical phonon mode, and a uniform plasmon mode;
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and we include a⋅𝑐P mediated transitions between ground states and excited states, where the center of mass
momentum operator depends on the nuclear mass and is uniform over the lattice, and includes contributions
from the three different oscillators.

We recall from section S5.1 that the position operator can be written in terms of the phonon mode operators
according to

R̂(𝑗, 𝑙) = R(𝑗, 𝑙) + ∑
k,𝜈

e(𝑗, k, 𝜈)√ ℏ
2𝑁𝑀𝑗𝜔k,𝜈

(𝑒𝑖k⋅R(𝑗,𝑙) ̂𝑎k,𝜈 + 𝑒−𝑖k⋅R(𝑗,𝑙) ̂𝑎†
k,𝜈) (217)

where all the parameters involved are described in section S5.1.

The corresponding expression for the center of mass momentum operator is

P̂(𝑗, 𝑙) = ∑
k,𝜈

e(𝑗, k, 𝜈)√ℏ𝑀𝑗𝜔k,𝜈
2𝑁 (

𝑒𝑖k⋅R(𝑗,𝑙) ̂𝑎k,𝜈 − 𝑒−𝑖k⋅R(𝑗,𝑙) ̂𝑎†
k,𝜈

𝑖 ) (218)

If we consider contributions only from one (uniform) acoustic mode and one (uniform) optical mode, then
this reduces to

P̂𝑗 → e(𝐴)
𝑗 √ℏ𝑀𝑗𝜔𝐴

2𝑁 ( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) + e(𝑂)
𝑗 √ℏ𝑀𝑗𝜔𝑂

2𝑁 ( ̂𝑎𝑂 − ̂𝑎†
𝑂

𝑖 ) (219)

We can extend this to include coupling with a uniform plasmon mode by writing

P̂𝑗 → e(𝐴)
𝑗 √ℏ𝑀𝑗𝜔𝐴

2𝑁 ( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) + e(𝑂)
𝑗 √ℏ𝑀𝑗𝜔𝑂

2𝑁 ( ̂𝑎𝑂 − ̂𝑎†
𝑂

𝑖 ) + e(𝑃)
𝑗 √𝑍2

𝑗 ℏ𝑀𝑗𝜔𝑃
2𝑁𝑒

( ̂𝑎𝑃 − ̂𝑎†
𝑃

𝑖 ) (220)

With this model we can describe a ⋅ 𝑐P interactions between nuclear states and acoustic phonons, optical
phonons and plasmons conveniently within the basic formalism.

Need for a strong coupling model

Since we assume that the nuclei interact with a uniform acoustic phonon mode, a uniform optical phonon
mode and a uniform plasmon mode, all of the nuclear transitions couple uniformly, which means that
transitions are cooperatively enhanced. This cooperative enhancement will be reflected through the presence
of Dicke factors below.

Perturbation theory runs into trouble in the strong coupling regime, so it is necessary to first evaluate how
strong the coupling is. So far in the text, we have been assessing coupling strength by measuring how large
the cooperatively enhanced coupling constant is compared to the nuclear transition energies, i.e.,

(𝑔𝑗)𝑛𝑢𝑐 = √𝑁𝑃𝑑𝑗

|⟨Pd∗
𝑗|a ⋅ 𝑐P|Pd⟩|

𝜖𝑗
(221)

Recall from S5.7 that 𝜖𝑗 is the transition energy.
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For the conditions of interest to us, we have seen that this dimensionless coupling strength is greater than 1
for many of the Pd∗/Pd transitions. Now that we consider energy exchange with the oscillators, we must also
compare the cooperatively enhanced coupling constant to the energy quantum associated with the oscillator
(here: an acoustic phonon mode), namely:

(𝑔𝑗)𝐴 = √𝑁𝑃𝑑𝑗

|⟨Pd∗
𝑗|a ⋅ 𝑐P|Pd⟩|

ℏ𝜔𝐴
= 𝜖𝑗

ℏ𝜔𝐴
(𝑔𝑗)𝑛𝑢𝑐 (222)

This extra comparison suggests that the dimensionless coupling strength for energy exchange between nuclear
states and acoustic phonon modes is many orders of magnitude larger than the coupling strength for the
nuclear transitions. A corresponding model therefore needs to operate in the extremely strong coupling
regime and cannot rely on perturbation theory.

A relevant picture for the extremely strong coupling regime is one in which the transitions that are present
during the excitation transfer exchange oscillator quanta freely with the lattice (at a rate Γ𝐴), sometimes
creating and sometimes annihilating, during the whole time up until the excitation transfer event is complete
(𝜏 = 1/Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟).

This is a probabilistic way of considering phonon exchange and it results in a probability distribution that
describes how many phonons have been created or annihilated as a result of the interaction with the nuclear
states. We will see shortly that such dynamics can lead to a significant enhancement of the excitation transfer
rate. We will start by developing an expression for the probability distribution associated with this kind
of phonon exchange (𝑓). The probability distribution will depend on the rate of acoustic phonon exchange
(Γ𝐴), which we will determine in a second step.

Probability distribution for acoustic phonon exchange

Each time an oscillator quantum is exchanged, either a quantum is created (𝛿𝑛𝐴 > 0) or a quantum is
destroyed (𝛿𝑛𝐴 < 0) . If this were a classical Bernoulli process, then we would expect the spread in the
number of phonon states (𝜎𝑛𝐴

) to be proportional to the square root of the number of oscillator quantum
exchanges (as with a random walk). However, quantum diffusion is much faster, and in the associated
quantum diffusion model we would expect the number of oscillator states eventually occupied to be on the
order of the number of oscillator quanta exchanged.

The probability distribution associated with phonon exchange that results after a time 𝜏 can be written as

𝑓𝑛𝐴
(𝛿𝑛𝐴, 𝜏) = 1

√2𝜋𝜎2𝑛𝐴
(𝜏)

exp{− 𝛿𝑛2
𝐴

2𝜎2𝑛𝐴
(𝜏)} (223)

with

𝜎𝑛𝐴
(𝜏) = 1

2 ∑
𝑗

Γ𝐴(𝑗)𝜏 → 1
2𝑛𝑗 Γ𝐴𝜏 (224)

where Γ𝐴 is the average rate for acoustic phonon exchange from a single transition, and where 𝑛𝑗 is the
average number of transitions that contribute to phonon or plasmon exchange. We assume that the time
available for phonon exchange 𝜏 is

𝜏 ∼ 1
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(225)
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where Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the excitation transfer rate evaluated at Δ𝑀𝑐2.

The associated energy distribution is

𝑓𝜖𝐴
(𝜖𝐴, 𝜏) = 1

√2𝜋𝜎2𝜖𝐴
(𝜏)

exp{− 𝜖2
𝐴

2𝜎2𝜖𝐴
(𝜏)} (226)

with

𝜖𝐴 = 𝛿𝑛𝐴ℏ𝜔𝐴 (227)

and

𝜎𝜖𝐴
= ℏ𝜔𝐴𝜎𝑛𝐴

(228)

Note that this distribution depends explicitly on the excitation transfer rate (through its inverse 𝜏). We
are going to make use of this distribution to evaluate the excitation transfer rate, which means that a
self-consistent solution will be required.

Rate for acoustic phonon exchange with a single transition

The rate of acoustic phonon exchange (Γ𝐴) for a single transition 𝑗 is

Γ𝐴(𝑗) = 2
ℏ|⟨Pd∗(𝑗)|a ⋅ 𝑐P(𝑗)|Pd⟩𝐴|

≈ 2
ℏ|e(𝐴)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|√𝑀𝑗𝑐2𝐸𝐴√𝑁𝑃𝑑𝑗
𝑁 (229)

Given that a great many individual transitions are involved, it is useful to work with an average according
to

Γ𝐴 = 2
ℏ|⟨Pd∗(𝑗)|a ⋅ 𝑐P(𝑗)|Pd⟩𝐴|

≈ 2
ℏ|e(𝐴)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|√𝑀𝑗𝑐2𝐸𝐴√𝑁𝑃𝑑𝑗
𝑁 (230)

A numeric evaluation leads to

Γ𝐴 ≈ 6.21 × 1025 √𝐸𝐴
1 J |e(𝐴)|𝑂𝑗√

𝑁𝑃𝑑𝑗
𝑁 s−1 (231)

The rate of acoustic phonon exchange depends on the 𝑂-values of the transitions involved. If we average over
the 120Sn levels and 𝑂-values that we have been using as an approximation for the Pd states (see sections
S5.4 and following), and average over the natural abundance of the Pd isotopes, then we obtain

𝑂𝑗√
𝑁𝑃𝑑𝑗

𝑁 = 0.0146 (232)
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This allows us to evaluate Eq. (231) and we find that the rate for coherent energy exchange between acoustic
phonons and Pd∗/Pd transitions is extremely fast.

The fastness of this rate implies that we should have included acoustic phonon exchange in the dynamicsof
models discussed earlier. It impacts how we think about and model the strongly-coupled Pd and acoustic
phonon systems. Ideally, we would like to work with the eigenfunctions of these two coupled systems in
connection with modeling excitation transfer from the D2/4He fusion transition. However, at present we do
not have available a suitable diagonalization. As a remedy, since acoustic phonon exchange is much faster
than the excitation transfer rate, we model acoustic phonon exchange as a “free energy exchange” for the
duration of an individual excitation transfer. This approach is discussed in detail in section S6.24.

Excitation transfer rate with acoustic phonon energy exchange

As we have already seen, the excitation transfer rate, as determined by the Golden Rule, depends on the
strength of the interactions and also the density of states at the relevant transition energy (to ensure energy
conservation for the transition). For the nuclear excitation transfer scenario that we are interested in, the
relevant transition energy in the absence of phonon exchange is the D2/4He fusion energy Δ𝑀𝑐2 = 23.85
MeV. The generalized density of states around that energy ̃𝜌𝑁(Δ𝑀𝑐2) is therefore what concerns us most.
However, when energy exchange with the lattice is allowed, the density of states across a spectrum of energies
becomes important.

Instead of considering energy conservation between the D2/4He system and the Pd∗/Pd system, we must
consider the oscillator and Pd together as Pd,𝑛𝐴/Pd∗,𝑛𝐴 + 𝛿𝑛𝐴. For example, if the coupled system of
Pd nuclei has absorbed 5 × 1014 quanta of phonon energy (𝜖𝐴 = 5 × 1014ℏ𝜔𝐴) from the lattice during the
nuclear excitation transfer period 𝜏 then the relevant density of states is going to be shifted up in energy

̃𝜌𝑁(Δ𝑀𝑐2 + 𝜖𝐴) to account for the already excited Pd.

We do not know deterministically ahead of time what the energy shift 𝜖𝐴 will be, because the energy exchange
with the lattice is probabilistic. We can, however, create an average by calculating the base transfer rate
Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 for each energy shift (see Eq. 211 in the previous section), weighting each scenario according to
how likely it is (taken from the probability distribution 𝑓𝜖𝐴

) and then summing the results to obtain the
resulting transfer rate estimate. This is represented visually in Fig S37.

When the above procedure is applied to different values of 𝐸 we get a similar plot to Figure S37 but with
𝑓𝜖𝐴

centered at 𝐸 instead of 23.85 MeV. This is described mathematically by the convolution below.

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = (Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝑓𝜖𝐴

)(𝐸)

= 2𝜋
ℏ |Δ𝒰|2( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴

)(𝐸)

= 2𝜋
ℏ |Δ𝒰|2 ∫

∞

−∞
̃𝜌𝑁(𝐸 − 𝜖𝐴)𝑓𝜖𝐴

(𝜖𝐴, 𝜏)𝑑𝜖 (233)

To develop an excitation transfer rate from this model we need to solve this constraint self-consistently at
the fusion transition energy

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(Δ𝑀𝑐2) = 2𝜋
ℏ |Δ𝒰|2 ∫

∞

−∞
̃𝜌𝑁(Δ𝑀𝑐2 − 𝜖𝐴)𝑓𝜖𝐴

(𝜖𝐴, 𝜏)𝑑𝜖 (234)

This convolution can be done exactly in the event that the generalized nuclear density of states is approxi-
mated by an exponential. An analytic model based on this kind of approximation is given in section S6.26.
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Figure S37: Calculating the excitation transfer rate including energy exchange with the lattice begins by looking at the base
excitation transfer rate Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 at 23.85MeV (intersection of red and blue solid lines) where energy exchange with the lattice
is still excluded. In actuality, there is a non-zero probability (shown by the green line) that during the excitation transfer time
𝜏, the Pd will exchange energy with the lattice phonons, thus shifting the energy of the Pd that are due to receive the 23.85
MeV from the fusion transition. An exemplary shift of 20 MeV is shown by the red dashed line (with its likelihood indicated
by the intersection of green line and the red dashed line). Such shifts require that we calculate the excitation transfer rate by
evaluating Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 at the shifted energy instead of at 23.85 MeV. To arrive at an overall rate estimate, each possible shift
must be considered, weighted by how likely this particular shift is to occur (indicated by the blue dashed line). The end result
for the excitation transfer rate comes from summing up all the weighted possibilities, i.e., taking an integral of what is shown
here as the blue dashed line.

A similar approach can be used to model optical phonon and plasmon exchange - see section S6.27 for details.

The following section will provide a quantitative estimate for expected transfer rates that result—under
realistic experimental conditions—from the discussions in this section. These rate calculations will draw
specifically on Eq. 234.
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S5.12 Transfer rate estimates: D2 to multiple resonant receiver states with
oscillator energy exchange

In the discussion above we have described a model for excitation transfer that involves multiple receiver
states which results in an expression for the associated rate which must be solved for self-consistently. Here
we focus on calculating the excitation transfer rate and other model parameters as a function of the energy
in a highly excited acoustic mode (𝐸𝐴).

To evaluate Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 from Eq. 234 we first need to consider the values of all relevant parameters. We take
values from section S5.5, specifically:

|1 − 𝜂| = 0.1 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.65 × 10−12 𝐺 = 90.35 (235)

where |1 − 𝜂| is for the D2/3+1/4He contribution to the D2/4He transition per section S6.5 and where the
volume ratio and the Gamow factor G take on the values determined in section S6.3.

All parameters above feed into the expression for Δ𝒰, which we remind the reader is (see section S5.9):

2
ℏΔ𝒰 = 2

ℏ|1 − 𝜂|𝑈√𝑁D2

= 2|1 − 𝜂|0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 √𝑀4𝐻𝑒𝑐2(1 J)
ℏ

√𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁D2

𝑁

= 2.38 × 10−18 √𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁D2

𝑁 s−1 (236)

As in previous sections, we can consider the effects of screening by multiplying Δ𝒰 by (as per section S5.9)

𝑒Δ𝐺𝑠𝑐𝑟 (237)

where (for 350 eV screening potential; see section S6.3)

Δ𝐺𝑠𝑐𝑟 = 49.2 (238)

This gives us

2
ℏ|Δ𝒰| = 5536√𝐸𝐴

1 J
√𝑁𝐷2

𝑁 s−1 (239)

The mode characteristics—𝑃𝑑𝑖𝑠𝑠𝜏𝐴 = 𝐸𝐴—feed into both Δ𝒰 and the expression for Γ𝐴, which affects the
generalized density of states for palladium ̃𝜌𝑁 and the phonon probability distribution 𝑓 . For convenience,
we reproduce Γ𝐴 from section S5.11:

Γ𝐴 ≈ 9.06 × 1023 √𝐸𝐴
1 J s−1 (240)

where, as in previous sections, we use a specific deuterium loading of
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𝑁D2

𝑁 = 0.25 × 1
9 (241)

Putting this all together, the self-consistent solution for the excitation transfer rate from Eq. 234 including
the effects of screening is shown in Figure S38 where we see an exponential relationship between Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
and 𝑃𝑑𝑖𝑠𝑠𝜏𝐴 = 𝐸𝐴.

Figure S38: Excitation transfer rate as a function of 𝐸𝐴.

The self-consistent solution also allows us to study the associated average phonon energy exchanged and the
spread of energies. See section S6.28 for more details.

We can extract an experimentally plausible value of Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 from the plot by selecting values for vibrational
power dissipation and frequency that we used in previous sections, namely:

𝑃𝑑𝑖𝑠𝑠 = 1 W 𝑓𝐴 = 5 MHz (242)

resulting in a 𝜏𝐴 (for acoustic phonons) of

𝜏𝐴 = 10−12(10−7 𝑓𝐴
1MHz)

−3/2
sec

≈ 0.003 sec (243)

We then arrive at an excitation transfer rate of:

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1 × 109 s−1 (244)

93



This is the population-level transfer rate, i.e., the rate at which excitation from the ensemble in group a
transfers to the ensemble in group b. To obtain a rate per deuteron pair that is comparable to the estimate
given by Koonin and Nauenberg 1989 [2], we normalize the expression by 𝑁D2

= 1015, which gives

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑁D2

= 1 × 10−6 s−1 (245)

This is significantly greater than the Koonin and Nauenberg value of 10−64 s−1 and also far beyond the
observability threshold of 10−23 s−1.

The population-level rate is on the order of the estimated D2 decoherence rate and so we can expect Dicke
factors to begin building up to create even higher rates over time. The path to building up these higher
Dicke factors is discussed in more detail in section S6.29.
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S5.13 Pd∗ excited state stabilization

The sections above presented different versions of excitation transfer models with D2 donor systems and Pd
receiver systems at increasing degrees of complexity. The version of the model discussed in sections S5.11 and
S5.12 yielded rates that not only exceed the observability threshold but that can also exceed the estimated
D2 decoherence time of 1 ns (given large enough phonon energies, e.g., 𝐸𝐴 in the case of acoustic phonons,
see Figure S38).

The expected result of such excitation transfer dynamics is the creation of a large number of Pd excited
states. In other words, the principles laid out in this document imply the possibility of creating devices for
the large-scale production of Pd excited states (or excited states of other receiver nuclei, when translating
these findings to other materials).

This section will consider what the consequences are of such kind of excited state production, especially with
respect to observable results. If the Pd nuclei in question were isolated, the issue would be trivial: each
excited state would decay per the known (or estimated) state lifetimes. For the M2 states that we focused on
because of the nature of a ⋅ 𝑐P coupling (see section S6.11), this decay is governed by magnetic quadrupole
coupling with the electromagnetic field. However, the fact that the nuclei participate in a coupled quantum
system—which causes their excitation in the first place—makes the more complex considerations in this
section necessary.

We will focus here on the lifetime of the Pd excited states, while the next section will focus on the various loss,
i.e., decay channels, which determine the observable products. We will see that rapid phonon and plasmon
exchange stabilizes radiative decay processes of unstable Pd∗ states. In essence, oscillator quanta exchange
transitions happen so fast and the nuclear excited states are occupied for such short periods of time that
their radiative decay is interrupted. These outcomes are related to the quantum Zeno effect discussed in
the literature [105]. Another consequence of these dynamics, where energy exchange is fast, is that nuclear
energy is expected to be converted efficiently into optical phonon energy and plasmon energy.

Note that changes to the lifetimes of excited states—beyond what was discussed about state lifetimes in
section S5.4—also impact the excitation transfer dynamics. That is because the excited state lifetimes
represent a constraint on those dynamics (per section S5.8). Stabilization and longer state lifetimes represent
a loosening of that constraint.

Brief review of Dirac’s model

We will start the discussion with a brief review of radiative decay models. Exponential decay from quantum
dynamics involving a continuum is described by Dirac’s model [104], and we can work with a modified version
of it here to address the issue of stabilization. Exponential decay can be derived from a finite basis model,
where one state (labelled by 0) is coupled to a continuum of states (labelled by 𝑗), under conditions where
the density of states is uniform and the coupling is the same to all states. This model can be written as

𝑖ℏ 𝑑
𝑑𝑡𝑐0(𝑡) = 𝐸0𝑐0(𝑡) + ∑

𝑗
𝑉 𝑐𝑗(𝑡)

𝑖ℏ 𝑑
𝑑𝑡𝑐𝑗(𝑡) = 𝐸𝑗𝑐𝑗(𝑡) + 𝑉 𝑐0(𝑡) (246)

where 𝑐𝑗(𝑡) (𝑗 = 0, 1, 2, 3...) is the probability amplitude for finding the system in basis state 𝑗 at some time
𝑡, 𝐸𝑗 (𝑗 = 0, 1, 2, 3...) is the energy of basis state 𝑗 in the absence of any coupling between the states and 𝑉
is the coupling between the special basis state with 𝑗 = 0 and the other states.
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The model can be solved (in the continuum limit) as an initial value problem (with 𝑐0(0) = 1 and 𝑐𝑗(0) = 0)
which results in exponential decay according to

𝑐0(𝑡) = 𝑒−𝑖𝐸0𝑡/ℏ𝑒−𝛾𝑡/2 (247)

with

𝛾 = 2𝜋
ℏ |𝑉 |2𝜌 (248)

What is remarkable about this model is that the exponential decay begins immediately, which is a conse-
quence of there being an infinite number of states arbitrarily far away in energy that contributes to the
decay.

A more realistic generalization of Dirac’s model

It is possible to modify Dirac’s model to account for variations in the coupling between the initial state
and states in the continuum. In the case of radiative decay, the coupling matrix elements at long photon
wavelength have a magnitude which is “large” compared to the “small” matrix elements expected when the
photon wavelength is much smaller than the nucleus. We can modify Dirac’s model to take this effect into
account by writing

𝑖ℏ 𝑑
𝑑𝑡𝑐0(𝑡) = 𝐸0𝑐0(𝑡) + ∑

𝑗
𝑉𝑗𝑐𝑗(𝑡)

𝑖ℏ 𝑑
𝑑𝑡𝑐𝑗(𝑡) = 𝐸𝑗𝑐𝑗(𝑡) + 𝑉𝑗𝑐0(𝑡) (249)

In this more realistic version of the model there are deviations from exponential decay, both at early times
where the dynamics deviate from exponential decay, and at late times where the decay is algebraic (due to
the absence of photon states with negative energy). At early times there is a delay before exponential decay
sets in, since the relatively “strong” coupling near resonance does not extend far off of resonance.

Decay in the case of transient occupation

Suppose that we are interested in the decay of a state which occurs for only a short time, and where the
dynamics can be modeled approximately by

𝑐0(𝑡) ≈ 𝑒−𝑖𝐸0𝑡/ℏ𝑒−𝑡2/2𝜏2 (250)

The idea here is that the state is occupied only temporarily due to the fast dynamics associated with phonon
and plasmon exchange. We can develop an estimate for the continuum state occupation from perturbation
theory according to

𝑐𝑗(𝑡) ≈ 𝑉𝑗
𝑖ℏ ∫

𝑡

−∞
𝑒−𝑖𝐸𝑗(𝑡−𝑡′)/ℏ𝑒−𝑖𝐸0𝑡′/ℏ𝑒−(𝑡′)2/2𝜏2𝑑𝑡′ (251)

We can use this to estimate the total probability in the continuum states according to
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∑
𝑗

|𝑐𝑗(∞)|2 ≈ ∑
𝑗

|𝑉𝑗|2
ℏ2 2𝜋𝜏2𝑒−(𝐸𝑗−𝐸0)2𝜏2/ℏ2 (252)

In the continuum limit this becomes

∑
𝑗

|𝑐𝑗(∞)|2 → 2𝜋𝜏2

ℏ2 ∫
∞

−∞
𝑉 2(𝜖)𝑒−𝜖2𝜏2/ℏ2𝜌(𝜖)𝑑𝜖 (253)

We can associate an effective decay rate in this case according to

𝛾 = 1√𝜋𝜏 ∑
𝑗

|𝑐𝑗(∞)|2 = 2√𝜋𝜏
ℏ2 ∫

∞

−∞
𝑉 2(𝜖)𝑒−𝜖2𝜏2/ℏ2𝜌(𝜖)𝑑𝜖 (254)

We can perform a sense check on the effective decay rate solution above by reverting to a uniform density of
states and constant coupling, i.e.

𝑉 (𝜖) → 𝑉 𝜌(𝜖) → 𝜌 (255)

In this case, the effective decay rate reduces to Eq. 248:

𝛾 → 2√𝜋𝜏𝑉 2𝜌
ℏ2 ∫

∞

−∞
𝑒−𝜖2𝜏2/ℏ2𝑑𝜖 = 2𝜋

ℏ |𝑉 |2𝜌 (256)

Stabilization of excited nuclear states

The argument developed here is that this effect has the potential to arrest decay and therefore stabilize
excited Pd∗ states under conditions where phonon and plasmon exchange is very fast. If 𝜏 is very small,
then the decay rate approaches

𝛾 → 2√𝜋𝜏
ℏ2 ∫

∞

−∞
𝑉 2(𝜖)𝜌(𝜖)𝑑𝜖 (257)

which becomes slower the faster the phonon and plasmon exchange is. How much stabilization occurs depends
on the details of the excited nuclear state and the decay mechanism.

Relation of this effect to the quantum Zeno effect

The well-known quantum Zeno effect involves the disruption of spontaneous decay at early time, prior to
when exponential decay sets in [105]. In the discussion here, the hindrance of spontaneous decay is due to
fast coherent transitions in and out of an unstable state. We consider this effect to be closely related to the
quantum Zeno effect, even though the underlying mechanism is different.
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S5.14 Pd∗ excited state decay

Earlier sections of this document described excitation transfer dynamics that can result in the production
of a larger number of nuclear excited states (in our case, Pd* excited states).

In the previous section we presented an argument on how these kinds of Pd∗ excited states can be stabilized
through rapid energy exchange with lattice oscillatory modes such as phonons. This stabilization relaxes the
constraints on the nuclear excitation transfer model and widens the scope of its application.

The decay process can, however, not be arrested indefinitely. And indeed it is the decay process that
ultimately determines how the energy that got released from the fusion transition results in observable
reaction products. This section is dedicated to this issue.

Conventional gamma, neutron and charged particle emission from unstable Pd∗ states

When looking at conventional decay channels of excited Pd* bound states (as discussed in section S5.4), we
can expect some low-level gamma emission in the 4-9 MeV part of the spectrum, alpha emission from states
above the alpha ionization threshold, proton emission from states above the proton ionization threshold, and
neutrons from states above the neutron ionization threshold (see section S6.17 for these thresholds).

In the case of a highly excited acoustic phonon mode, we expect rapid energy exchange between the nuclear
states and the lattice (per the discussion in section S5.11) and a partial suppression of these decay channels
due to the short occupation times of individual states (per section S5.13). Nonetheless, we expect such
suppression not to be complete, which implies the prediction of some low-level nuclear particle emission from
the conventional decay of excited Pd∗ per the previous paragraph.

Emission of small quanta from Pd∗ excited states to lattice modes

We noted in the previous section that we would conventionally expect the excited (M2) Pd∗ states to
radiatively decay via magnetic quadrupole coupling with the electromagnetic field. The associated lifetimes
are short (see section S5.4), which places severe limits on excitation transfer from the fusion transition to such
receiver states. However, if the radiative decay of these states is slowed down per the arguments presented
in the previous section, then this leaves not only more time for excitation transfer dynamics; it also implies
that alternative pathways may be faster than the (suppressed) conventional loss channels.

Of particular interest is the conjectured transfer of excitation from nuclear states to oscillatory modes of
the lattice (primarily optical phonons and plasmons). Relevant quanta here are in the meV and eV range,
which is substantially smaller than the MeV level energies in the nuclear states. However, as we have seen
in section S5.7, the density of nuclear states can be on the order of hundreds of states per eV and higher.
Consequently, it is conceivable that energy from nuclear states gets emitted into lattice modes, which would
macroscopically manifest as heat, as excitation transfers between nuclear states.

Ideally we would like to evaluate the rate for excitation transfer from the fusion transition in connection
with excess heat. Such an approach goes beyond the scope of this paper, but we will provide a brief outlook
here.

It is possible to consider a model for excess heat production based on Eq. 619 which we reproduce below:
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where a version of �̂�𝑓𝑟𝑒𝑒 in this expression would include all of the oscillators (instead of just a contribution
from the acoustic phonons, as focused on earlier). The idea here is that after start-up there may be some
excited Pd∗ nuclei present, and there may also be significant optical phonon excitation and/or plasmon
excitation. Under these conditions there may be significant occupation of final states, where the fusion
energy has gone nearly completely into the oscillator degrees of freedom. We would expect excitation
transfer rates to be similar to what was estimated above under conditions of start-up, if not faster due to
the accumulation of cooperative enhancement (Dicke) factors.

We do not yet have quantitative predictions from this model, but it provides a formal estimate for the rate
of excitation transfer from the fusion transition in connection with excess heat production. The development
of detailed models to describe this process is a major goal of our future research.

Note that even if the proposed process to convert nuclear energy into lattice modes is dominant, we would not
expect that it outcompetes radiative decay in every instance. The implication is that we would still expect
some nuclear particle emission per the previous subsection under many kinds of experimental conditions.

Decay of Pd∗ nuclear molecule cluster states

The model under discussion also suggests the existence of an operating regime, where excitation transfers
between nuclear states is at such a fast rate that there is not enough time neither for radiative decay nor for
the exchange of quanta with lattice modes. In such a scenario, excitation may transfer rapidly between many
nuclear states and eventually accumulate in naturally long-lived nuclear molecule cluster states (see section
S5.4). Suppose that an excitation transfer receiver state has one unit of angular momentum, and radiatively
decays quickly to a non-rotational state that is a long-lived nuclear molecule state. Such a state is essentially
a dead end in connection with the nuclear dynamics considered here, since there is no a ⋅ 𝑐P interaction.
Such states would remain occupied until ultimately undergoing tunnel decay, leading to (asymmetric and
symmetric) fission products of the excited nuclei.

Fast acoustic phonon exchange is associated with large transition strengths (or large 𝑂-values), particularly
in bound Pd∗. However, transitions to highly-excited nuclear molecule cluster states are expected to have
much smaller transition strengths, meaning that their spontaneous decay channels would not be suppressed.

If the excitation transfer from the fusion transition is slow, resulting in the receipt of single fusion transition
quanta on the side of the receiver nuclei, then the decay of these states would be dominated by the tunneling
of low-mass daughters (protons, alphas, neutrons). This mechanism could account for the low-level alpha
emission at high energy reported in [106]. Conversely, if the excitation transfer from the fusion transition is
faster, resulting in the receipt of multiple fusion transition quanta, then the system would be expected to
reach more symmetric nuclear molecule cluster states at higher energies, with even lower transition strengths.
Some of these transitions may involve one or more units of angular momentum and could radiatively decay
to states without a ⋅ 𝑐P coupling. These non-rotating states, being long-lived, can undergo tunnel decay,
potentially explaining the fission-type transmutation effects observed in certain LENR experiments.
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S5.15 Other reaction products

The previous section discussed different types of reaction products that we expect to result from excitation
transfer from D2 donors to Pd receivers with a focus on reaction products resulting from the decay of Pd
excited states caused by the transfer. While we expect these products to be the dominant ones in most
operating regimes, they are not the only ones expected. This section discusses other reaction products not
directly associated with Pd excited state decay.

Specifically, we expect as further reaction products a low level of 3+1 fusion products from the loss channels
discussed in sections S5.2 (and in more detail in sections S6.5 and S6.6). These sections showed how loss
channels—all associated with the highly unstable 3+1 state of 4He—play a key role in breaking destructive
interference (with substantially larger transfer rates as a result of this). What these mentioned sections on
loss did not emphasize were the reaction products that can result from such loss channels. This is the subject
of the present section.

Model to estimate 3+1 fusion reaction products

We can create a simple model to estimate the amount of 3+1 fusion reaction products by considering the
excitation transfer event as involving an extended period where no 3+1 fusion occurs; a short period in which
the 3+1 state is occupied, and during which 3+1 fusion is possible; and an extended period during which
the 4He state is occupied and no 3+1 fusion occurs.

Based on this, we can develop an estimate for the 3+1 fusion rate based on

Γ3+1 = 1
2Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓3+1𝑃𝑡𝑢𝑛𝑛𝑒𝑙 (259)

where Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the excitation transfer rate derived in section S5.11, 𝑓3+1 is the fraction of time that
the 3+1 state is occupied for and 𝑃𝑡𝑢𝑛𝑛𝑒𝑙 is the probability that 3+1 fusion occurs while the 3+1 state is
occupied.

The time associated with an excitation transfer event is

𝜏𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(260)

For the time associated with 3+1 occupation we take the

𝜏3+1 = ℏ
√|𝒱|2 + ℏ2𝛾2

𝑡𝑢𝑛𝑛𝑒𝑙

(261)

where 𝒱 is the Dicke enhanced version of 𝑉 from section S6.5

𝒱 = ⟨(3 + 1)|a ⋅ 𝑐P|4He⟩√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎 (262)

and ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙 = 5.95 MeV is the line with associated with the 3+1 tunnel decay (see section S6.2).

This leads to
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𝑓3+1 = 𝜏3+1
𝜏𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= ℏΓ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

√|𝒱|2 + ℏ2𝛾2
𝑡𝑢𝑛𝑛𝑒𝑙

(263)

The probability that 3+1 fusion occurs while the 3+1 state is occupied is

𝑃𝑡𝑢𝑛𝑛𝑒𝑙 = ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙

√|𝒱|2 + ℏ2𝛾2
𝑡𝑢𝑛𝑛𝑒𝑙

(264)

Putting this all together gives us a 3+1 fusion rate of

Γ3+1 = 1
2Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

ℏΓ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

√|𝒱|2 + ℏ2𝛾2
𝑡𝑢𝑛𝑛𝑒𝑙

ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙

√|𝒱|2 + ℏ2𝛾2
𝑡𝑢𝑛𝑛𝑒𝑙

= 1
2Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(ℏΓ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)(ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙)
|𝒱|2 + ℏ2𝛾2

𝑡𝑢𝑛𝑛𝑒𝑙
(265)

We see from this that the relative yield of 3+1 fusion reactions to excitation transfer transitions is

Γ3+1
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= 1
2

(ℏΓ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)(ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙)
|𝒱|2 + ℏ2𝛾2

𝑡𝑢𝑛𝑛𝑒𝑙
(266)

Our evaluation suggests that this is much less than unity. In other words, the expected rate of 3+1 fusion
products via loss channels would be low. This is consistent with experimental reports such as by Jones and
coworkers in 1989 [1] who reported low levels of neutron emission from a PdD experiment.

Branching ratios

The ratio in Eq. 266 effectively represents a kind of branching ratio between 3+1 fusion on the one hand
and fusion from D2 donors undergoing excitation transfer on the other hand, with only a small portion of
the energy released going into 3+1 fusion products.

The absence of commensurable neutron products has been a primary concern surrounding claims of fusion
in solid-state metal hydrides. The proposed model provides some insight as to why the observed branching
ratio could be so different.

There is another branching ratio, namely the typical branching ratio of the two 3+1 fusion channels, which
can be described as

𝑅 = Γ(𝑛 +3 He)
Γ(𝑝 + 𝑡) (267)

From [107] we see that the 4He∗ d+d 𝑇 = 0 5S 𝐽𝜋 = 2+ state decays with an n/p branching ratio near 0.92,
and the 4He∗ d+d 𝑇 = 0 3P 𝐽𝜋 = 1− decays with an n/p branching ratio near 1.14. This indicates that the
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n/p branching ratio is channel dependent, and that measurements of the neutron-to-proton (n/p) ratio has
the potential to provide information about what channels or states are involved.

This is particularly striking in muon-catalyzed fusion, where the R-matrix calculations of Hale [108] the
expected ratio for S (𝐿 = 0) channel in muon-catalyzed dd fusion is 0.886, and for the P (𝐿 = 1) channel is
1.43. Experiments with muon-catalyzed dd fusion show a ratio for the 𝐿 = 1 channel close to this predicted
value [109].

In ion beam experiments the n/p ratio for d+d fusion reactions is near 1.0 [110], [111]. If reported low-level
neutron emission in LENR experiments were caused by excessive levels of screening, this would be due to
S-channel contribution, and would come with a n/p branching ratio near 1.0 as observed in the ion beam
experiments.

Recall (section S5.4 and S6.8) that the kind of relativistic coupling discussed in this document involves
transitions to 3P J=1 states, which would result in low-level dd-fusion when undergoing 3+1 decay. The
n/p branching ratio for the 4He∗ (3+1) 𝑇 = 0 3P 𝐽𝜋 = 1− state is near 0.93. This suggests that it might be
possible to distinguish between an explanation for reported LENR effects based on an enhanced screening
mechanism (which would lead to an n/p ratio near 1.0), and one based on nuclear excited transfer as discussed
in this document (which would lead to an n/p ratio near 0.93) [112].

Discussion

In a study of nuclear-level excess heat from metal-hydrogen samples, in which neutron emission was monitored
at the same time that excess heat was measured, there is little evidence of any low-level neutron emission
correlated with excess heat production. An upper limit on the order of one neutron per 100 J of excess
energy produced was estimated based on experimental reports [113]. In other words, experimental reports
are consistent with the prediction of a very low branching ratio of 3+1 fusion to excitation transfer (Eq.
266)—with the latter including the possibility of excess heat production (per S5.15).

The view that we adopted over the years is one which suggests that excess heat production is associated with
a “clean” reaction process that produces essentially no energetic nuclear particles when running efficiently.
In terms of the models under discussion here, we consider this to correspond to conditions conducive to fast
excitation transfer: a large ratio of 𝑁𝐷2

/𝑁 , large acoustic phonon mode excitation, large optical phonon
mode excitation, and a large coherence domain; with excitation transfer rates from the fusion transition to
Pd∗/Pd transitions, stabilization of corresponding Pd∗ states due to rapid acoustic phonon exchange, and
fast exchange of energy from Pd∗ states to optical phonons.

Observable levels of 3+1 fusion (and potentially products from other loss processes) would be associated
with a picture, in which the (primary) excess heat process is frustrated, e.g., due to a lack of D2 molecules
present or insufficient acoustic phonon excitation.
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S5.16 Outlook

The notion that nuclear fusion and transmutation reactions might be modified when taking place in a metallic
lattice goes back to the 1920s [114, 115] and received much attention again in 1989, when Fleischmann and
Pons described an excess heat effect that they claimed to have observed in experiments with deuterium
electrochemically loaded into Pd cathodes [116]. Fleischmann and Pons speculated that deuterons were
fusing in some novel way to release large amounts of energy (as measured calorimetrically) and 4He (which
had been reported from later experiments of the same kind [117, 118]). This was a truly remarkable claim,
which, if true, would imply that nuclear fusion energy could be released near room temperature, in a small-
scale, tabletop setup.

At the time, it was recognized by essentially all observers that the implications of such a hypothesized
process would be enormous. This significance is reflected in a recent statement by the US Department
of Energy’s innovation agency ARPA-E that was part of a program announcement on low-energy nuclear
reactions (LENR): “Based on its claimed characteristics, LENR may be an ideal form of nuclear energy
with potentially low capital cost, high specific power and energy, and little-to-no radioactive byproducts. If
LENR can be irrefutably demonstrated and scaled, it could potentially become a disruptive technology with
myriad energy, defense, transportation, and space applications”

Note that ARPA-E refers to “low-energy nuclear reaction” to describe a hypothesized class of novel nuclear
reactions associated with reported anomalies from metal-hydrogen samples such as those listed in section
S1.3. In this document, and in the main article text, we have referred to this hypothesized class of nuclear
reactions as solid-state fusion reactions. ARPA-E’s choice of words is rooted in the desire to be agnostic as
to the cause of the reported anomalies and to include in the nomenclature the fact that low-energy stimuli
are used in corresponding experiments.

A major contributing factor to the lack of research activity following the claims by Fleischmann and Pons
in 1989 was the belief that the proposed effect was physically impossible. The basics of deuteron-deuteron
fusion had been believed to be understood for many years, and the process was considered conceptually and
theoretically straightforward. Nothing in the relevant theoretical or experimental scientific literature lent
support to the possibility that Fleischmann and Pons might have observed a real effect.

In the many pages above and below, we describe a model that we suggest can lead to a sufficient understanding
of the basic effect underlying the claims by Fleischmann and Pons as well as the subsequent (and some of
the preceding) claims of many experimentalists in the LENR field.

In the physics community more generally, previous theoretical and experimental work on nuclear fusion has
focused on it as a quantum mechanically spontaneous process, involving two, or in some cases three, nuclei
at a time. In this frame, fusion (deuterium fusion and fusion with other reactants) is indeed conceptually
simple: in essence, two nuclei collide with sufficient energy to tunnel through the Coulomb barrier. When
two deuterons get close, the constituent nucleons can rearrange to a lower energy 3+1 configuration, and the
fusion products leave at high relative energy as a result of the mass energy released. In particular, Koonin
and Nauenberg’s 1989 letter to Nature [2] and Leggett and Baym’s 1989 article in Phys. Rev. Lett. [119]
estimated upper bounds on electron-screened cold fusion reaction rates many orders of magnitude too slow
to be observable. And in the case of the latter, the possibility of “an exotic mechanism relying on coherence
between fusion processes involving different deuteron pairs” was deemed “extraordinarily implausible.” Under
discussion in this document is the possibility of fusion as an induced process, for which the underlying physical
processes are very different.

We suggest that the ideas and models laid out in this document can contribute to the formation of a new
field at the intersection of nuclear engineering and solid state physics. Towards that end, and towards the
development of corresponding technology, a number of issues need attention in future research. These are
briefly laid out below.
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Better characterization of LENR experiments

While there exists a substantial number of experimental reports that claim the observation of energetic
particle emission, purported fission products and excess heat production consistent with the models presented
here (see section S1.3 for a selection), more experimental work is needed to better understand what kinds
of material systems can yield what kinds of results under what kinds of circumstances. In 2023, ARPA-E
[78] launched a research program to improve the quality of LENR experiments and to develop and bring to
bear best practices for materials characterization, elemental and isotopic analysis, gas analysis, and nuclear
particle detection.

Such experimental efforts could also involve the development of new diagnostics for LENR effects, informed
by the ideas in this document. For instance, we predict that under some circumstances nuclear energy can
get emitted into lattice modes. Differences in the lattice strain resulting from large amplitude vibrations
can in turn result in changes in the electron distribution at the surface due to the strain contribution to
the electron energy. The expected result would be radio frequency (RF) generation, for which dedicated
diagnostics could be developed and deployed in LENR experiments.

Better understanding and control of sample preparation and stimulation

There is also a need to better understand and achieve more control over the nanostructures and compositions
of samples as well as samples’ dynamic response to different kinds of stimuli. The former includes such aspects
as the formation of vacancies and vacancy-hydrogen clusters in different materials and the preparation of
isotopically pure and isotopically doped samples. The latter includes predicting and studying the effects of
different kinds of stimulation mechanisms on samples such as laser pulses, electric pulses, acoustic/ultrasound
stimulation, mechanical shocks, phase changes, etc. This pertains particularly to the phonon and plasmon
modes that get excited as a result.

Specifically, techniques are needed to exert great control over the excitation of specific phonon and plas-
mon modes in samples that are of particular interest (as predicted by matching simulations). A better
understanding is also needed regarding different roles that acoustic phonon modes, optical phonon modes,
plasmon modes (and potentially other oscillatory modes such as magnon modes) play. We expect acoustic
phonon modes to be more dominant than optical phonon modes (weaker coupling due to proportionality of
the relativistic coupling to the square root of the energy S5.3) in mediating nuclear excitation transfer. We
do expect, however, for optical phonons to play a significant role when it comes to energy exchange, and the
same is the case for plasmons.

Development of integrated and comprehensive codes linking sample and stimulation charac-
teristics to LENR outcomes

An ultimate goal of our effort is the deliberate design of LENR experiments (and later LENR technology)
through rational design. This requires the development of codes that describe all relevant features of the
system, from the nuclear states of the nuclei in the sample, to the structure and dynamics of the lattice, to
the complex quantum dynamical processes that result from the above. We have already embarked on this
kind of project, as is reflected in this document, but much more work is needed. This task may involve the
creation or adaptation of different sets of code and data that then need to be integrated through well-defined
interfaces.
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Towards more comprehensive nuclear data sets

A critical input for the above-mentioned codes are nuclear data sets that include as comprehensively as
possible the existing nuclear states for the types of nuclei to be used in the sample. Many such nuclear
states are recorded in databases like NuDat. However, as we have discussed in section S5.4, many states
are missing in existing databases and need to be identified through future experimental efforts or through
simulations.

Specific focus should be on (bound) excited states that have M2 coupling with the ground state (associated
energy levels and lifetimes as well as the radiative decay rates or M2 transition strengths). We expect
large-scale nuclear shell model calculations to be highly effective for this.

Identification and characterization of nuclear molecule cluster states of mid-sized nuclei

Similarly, nuclear molecule cluster states play an important role in the dynamics described in this document
(see S5.4 and S5.14). Numerous such states exist for different nuclei, but very few have been rigorously
identified and characterized. Especially important are nuclei that form the lattices of samples or that are
present in impurities or dopants.

Here, too, we care about energy levels, lifetimes, and estimates for the a-matrix elements for transitions from
the ground state with M2 multipolarity.

Dedicated basic science experiments to further investigate individual parts of the presented
argument

The argument presented in this document is complex and, while resting entirely on known physics, involves
predicted effects that may be unexpected and perhaps surprising to many observers. This includes, for
instance, the relativistic coupling between lattice modes and M2 nuclear states as a consequence of Lorentz
invariance (S6.7). While the predicted effects can be studied through LENR experiments, alternative plat-
forms can be devised that allow for the dedicated investigation of such effects in isolation. This also applies
to other effects such as breaking destructive interference through loss and nuclear supertransfer.

Consideration of alternative materials with different donor systems and receiver systems

Finally, as has been hinted at above, the ideas presented here can readily be extended and transferred to other
materials systems beyond PdD, on which the focus has been laid in this document. On the donor side, other
fusion transitions can be considered as a source of nuclear binding energy that drives excitation transfer
dynamics. We direct particular attention toward the HD to 3He transition with its 5.49 MeV transition
energy. Section S6.30 contains a dedicated discussion of that donor system and section S6.10 contains a
preliminary calculation of the HD to 3He matrix element for the relativistic coupling (the coupling that we
worked with in the majority of the document, see S5.3).

On the receiver side, many nuclei—and combinations thereof—can be considered. Critical factors are the
proximity of the donor system nuclei that are enabled by the lattice (e.g., deuterium molecule formation
in vacancy-hydrogen clusters in Pd and equivalents in other materials), the amount of screening provided,
the occupied oscillatory modes under relevant types of stimulation, and the nuclear states that determine
resonances and transfer channels as well as transfer rates, stabilization and decay dynamics. Some reports
from past LENR experiments suggest that materials such as nickel and titanium may represent viable
alternatives to palladium.
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Final discussion

The emergence of the LENR field exhibits some remarkable parallels to the emergence of the field of semi-
conductor engineering and modern electronics. Amplification effects in early semiconductor materials were
reported as early as the 1920s [120], but it was not until the 1948 Physical Review Letter [121] on transistor
action that experiments could be staged that yielded the sought amplification effects with some degree of re-
liability and with some degree of understanding. And still, many more questions needed to be answered after
1948, for instance with respect to the scalability, fabrication, economics of transistors and other electronic
components.

This document seeks to make a contribution to the LENR field, helping it to move beyond sporadic reports
of anomalies from metal-hydrogen samples towards the rational design of LENR experiments (and, later,
LENR technology). In the case of the transistor, fundamental insights related to the control of electronic
quantum states led not only to solid-state amplification devices but to the entire new field of electronics.
Similarly, fundamental insights related to the control of nuclear quantum states may lead not only to LENR
devices but to the new field of nucleonics.

The hope (and our expectation) is that this new field can follow the trajectory of the semiconductor field
from the late 1940s onward and eventually produce devices that enhance and revolutionize—in this case in
the field of energy instead of information—the lives of people across the planet.
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S6 Auxiliary sections for detailed quantum dynamics calculations

S6.1 Relevant D2 and 4He nuclear states and their wave functions

D2 molecular wave functions

Just as electrons can occupy various configurations within an atom or molecule, nucleons (protons and
neutrons) can also arrange themselves in different configurations within an individual nucleus and across
nuclei that make up a molecule.

A D2 molecule can be viewed from different perspectives, each of which can be justified as a starting point
for model development. From a bottom-up perspective, we are looking at a system of four nucleons, where
each nucleon has one close (< 5 fm) neighbor and two far (∼74 pm) neighbors. A more modular perspective
recognizes pairs of protons and neutrons as deuterons, considers each deuteron by itself first, and then
integrates the two deuterons into a D2 molecule. A top-down perspective views the D2 molecule as a single
nuclear system that is highly clustered.

When one avoids simplifications, each perspective can result in the same mathematical description: a single
wave function that describes the possible nuclear configurations across the expanse of a molecule such as D2.
Such a wave function must include the following information:

• Spatial (R) - How far apart are the nucleons that make up an individual nucleus and the nuclei that
make up the molecule?

• Spin angular momentum (quantum number S) - What is the total spin of all the nuclei in the molecule?

• Orbital angular momentum (quantum number L) - How much are the nuclei rotating around each
other?

• Isospin (quantum number T) - The total isospin of the nucleons, which helps describe how nucleons are
differentiated (as protons or neutrons) and how these differences affect the nuclear interactions within
the molecule.

In addition, total angular momentum 𝐽 can be important when spin-orbit (LS) coupling cannot be neglected—
as is the case when matrix elements are calculated for coupling-mediated nuclear state transitions (see section
S5.3 and subsequent sections).

Angular momentum plays a particularly critical role because it not only influences the potentials present in
the Schrödinger equation, which shape the spatial wave function, but its values forbid certain transitions
through specific selection rules (see section S6.8) that depend on the details of the interactions that mediate
the transitions. Certain compact notations have therefore been developed to make it easier to navigate the
angular momentum space. In particular “Term Symbols” represent the states as 2𝑆+1𝐿𝐽 where L is the total
orbital quantum number in spectroscopic notation

𝐿 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Symbol S P D F G H I K L M N O Q R T U V

Table 1: Correspondence between Orbital Angular Momentum Quantum Number (𝐿) and Spectroscopic
Symbols

and 2𝑆 + 1 indicates the total number of spin states which are enumerated by the spin magnetic quantum
number 𝑀𝑆 = −𝑆, −𝑆 + 1, ..., 𝑆 − 1, 𝑆. People therefore often refer to 𝑆 = 0, 1, 2 as the singlet, triplet,
quintet states. Sometimes the 𝐽 is not included in the notation if LS coupling is not relevant in a particular
use case.
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For the specific case of a D2 molecule, there are certain constraints based on our knowledge of an individual
deuteron. Specifically, a deuteron has an isospin of 𝑇 = 0 and a spin value of 𝑆 = +1. A D2 molecule
therefore has isospin of 𝑇 = 0 and spin 𝑆 = 0, 1, 2, based on the rules of angular momentum addition.

To get a sense as to which angular momentum states are important for a D2 molecule in practice, Figure
S39 shows the relative proportion of each state in thermodynamic equilibrium across different temperatures.

Figure S39: Temperature dependence of the distribution of angular momentum states for a D2 molecule. Blue (1S), orange
(5S), green (3P) and purple (5D) lines are bolded because they are the most significant states for our purposes.

The approach to constructing the nuclear wave functions for molecular D2 involves first constructing a
suitable unsymmetrized wave function that has appropriate space, spin, and isospin components. An unsym-
metrized wavefunction is a preliminary wavefunction that is constructed without considering the requirement
for the wave function to be antisymmetric under the exchange of identical particles (in this case, nucleons).

Then we can make use of an antisymmetrization operator 𝒜 to produce a fully antisymmetric wavefunction,
i.e., a wave function that satisfies the Pauli exclusion principle. In general, we may write this as

Ψ = 𝒜{Φ𝑅Φ𝑆Φ𝑇 } (268)

where Φ𝑅, Φ𝑆, and Φ𝑇 denote space, spin, and isospin components, respectively.

We will not describe the antisymmeterisation procedure here (details can be found in Hagelstein 2013 [122])
and instead focus on how to construct the different parts of the wave function, beginning with the spatial
part.
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D2 molecular spatial wave function

To describe the positions of the nucleons in the D2 molecule, instead of using the nucleon coordinates
r1, r2, r3, r4, we choose a convenient coordinate system that uses the internal relative coordinates between
the two nucleons in each deuteron, as well as the separation between the two center-of-mass positions of the
deuterons. This is represented mathematically as:

R = r1 + r2 + r3 + r4
4

r𝑎 = r2 − r1 r𝑏 = r4 − r3

r = r3 + r4
2 − r1 + r2

2

(269)

and visually in Figure S40

Figure S40: Internal coordinates for the D2 molecule in the 12;34 permutation.

For the overall molecular D2 spatial wave function we follow [122] and write

Φ𝑅 = 𝜙𝑑(|r𝑎|)𝜙𝑑(|r𝑏|)𝑅𝐷𝐷(|r|)𝑌𝐿𝑀 (270)

where 𝜙𝑑 is deuteron relative wave function of each deuteron (assumed to carry no orbital angular momentum)
and where 𝑅𝐷𝐷 and 𝑌𝐿𝑀 are the radial wave function and relevant spherical harmonic associated with the
deuteron-deuteron separation (r).

For the D2/4He a-matrix element calculation (S6.9), we work with the 3S component of the deuteron relativ
wave function 𝜙𝑑 from the chiral effective field theory NNNLO model of Epelbaum et al. (2005) [123] (see
Figure S41).

Later in the text, we consider the HD/3He transition as a donor system for nuclear excitation transfer and
estimate the corresponding matrix element (S6.10). In that calculation we used the following expression for
the 3S component of the deuteron relative wave function [122]:

𝜙𝑑(𝑟) =
⎧{
⎨{⎩

0 for 𝑟 < 𝑟0

𝑁𝑑
tanh[𝛾(𝑟 − 𝑟0)] e−𝛽𝑟

𝑟 for 𝑟0 < 𝑟
(271)
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Figure S41: 3S component of the deuteron wavefunction based on the chiral effective field theory NNNLO interaction from
Epelbaum et al. (2005) (red) [123]; fitted wave function used in the model for the D2/4He a-matrix element calculation (blue).

For the radial wave function 𝑅𝐷𝐷 we transform to 𝑃𝐷𝐷 = 𝑟𝑅𝐷𝐷 and solve the radial Schrödinger equation:

𝐸 𝑃𝐷𝐷(𝑟) = ( − ℏ2

2𝜇
𝑑2

𝑑𝑟2 + ℏ2𝐿(𝐿 + 1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝐿

𝑁 (𝑟))𝑃𝐷𝐷(𝑟) (272)

where 𝜇 is the reduced mass of the D2 molecule, ℏ2𝐿(𝐿+1)
2𝜇𝑟2 is the centripetal potential, 𝑉𝑚𝑜𝑙(𝑟) is the molecular

potential and 𝑉 𝑆,𝐿
𝑁 (𝑟) is the nuclear potential.

We use the nuclear potential (in MeV) from Weller (as described in [124]):

𝑉 𝑆,𝐿
𝑁 (𝑟) = 𝑉0

1 + 𝑒(𝑟−𝑟𝑆)/𝑎𝑆
(273)

whose parameters depend on 𝑆 and 𝐿 as can be seen in table 2.

State 𝑉0 (MeV) 𝑟𝑠 (fm) 𝑎𝑠 (fm)
1𝑆 -74.0 1.70 0.90
5𝑆 -15.5 3.59 0.81
3𝑃 -13.5 5.04 0.79
5𝐷 -15.5 3.59 0.81

Table 2: Nuclear potential parameters
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For a realistic molecular Coulomb potential, we draw on Kolos 1986 [125]. We parameterized the numerical
Kolos potential as:

𝑉𝑚𝑜𝑙(𝑟) = 2
𝑟 (1 − 𝑏1𝑟 − 𝑏2𝑟2)𝑒−𝛼𝑟𝑠 (274)

with 𝑟 in units of the Bohr radius (𝑎0), 𝑉𝑚𝑜𝑙 is in Rydbergs and with

𝛼 = 0.6255121237003474, 𝑏1 = 1.4752572117720800,
𝑏2 = −0.2369829512108492, 𝑠 = 1.0659864120418940 (275)

(where the fit only includes points out to 𝑟 = 4.8𝑎0).

Putting this all together results in a combined potential ℏ2𝐿(𝐿+1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝐿

𝑁 (𝑟) as seen in Figure S42.
This enables a numerical solution to the radial Schrödinger equation using a 3 point scheme on a non-uniform
grid based on a shooting method. For more details on this scheme, see https://github.com/project-
ida/nuclear-reactions. Figure S43 shows the results for several values of L and S using a log scale to
allow us to see the wave function across the molecular and nuclear length scales. Figure S44 and S45 shows
the same results but focusing on the nuclear scale.

Figure S42: Total potential (centripetal + molecular + nuclear) that determines the radial wavefunction 𝑅𝐷𝐷.

Spin and isospin part of the D2 molecular wave function

A deuteron is only stable with isospin 𝑇 = 0 and spin 𝑆 = 1. A D2 molecule therefore has isospin 𝑇 = 0
and 3 possible spin states of 𝑆 = 0, 1, 2.
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Figure S43: Normalised probability density associated with the solutions of the radial wave function equation 272.

Figure S44: Normalised probability density associated with the solutions of the radial wave function equation 272.
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Figure S45: Normalised probability density associated with the solutions of the radial wave function equation 272.

The isospin part of the D2 wave function Φ𝑇 is the simplest part to construct because it involves writing a
singlet state

Φ𝑇 = ∣𝑇 = 0, 𝑀𝑇 = 0⟩
12;34

= ∣𝑇 = 0, 𝑀𝑇 = 0⟩
12

∣𝑇 = 0, 𝑀𝑇 = 0⟩
34

= (𝑝1𝑛2 − 𝑛1𝑝2√
2

)(𝑝3𝑛4 − 𝑛3𝑝4√
2

)

= 1
2 (𝑝1𝑛2𝑝3𝑛4 − 𝑝1𝑛2𝑛3𝑝4 − 𝑛1𝑝2𝑝3𝑛4 + 𝑛1𝑝2𝑛3𝑝4)

(276)

For the spin part, we construct the wave function by enumerating all the possible combinations in which
the total nuclear spin gives a desired spin component value 𝑀𝑆. The coefficients (including sign) for each
combination then determine the overall spin value 𝑆. These coefficients are most conveniently found using
Clebsch–Gordan coefficient lookup tables. We provide the 𝑆 = 1, 𝑀𝑆 = 1 state as an example:

Φ𝑆 = ∣𝑆 = 1, 𝑀𝑆 = 1⟩
12;34

= 1
2 (↑1↑2↑3↓4 + ↑1↑2↓3↑4 − ↑1↓2↑3↑4 − ↓1↑2↑3↑4)

(277)
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Here we have 4 combinations in which 3 of the 4 nucleons have spin up and one has spin down - this results
in 𝑀𝑆 = 1.
From here, the different parts of the wave function are combined and the antisymmetrization procedure
performed. This involves swapping nucleon labels to create different permutations and combining them
together to create the allowed anti-symmetry.

4He ground state wave function

In a more complete description of the ground state of the alpha particle we might want to use the different 1S,
3P and 5D state components that result from group theory [126], [127]. For modeling the a-matrix element,
we will make use of a simpler approximate wave function, focusing on the dominant 1S component with a
fully symmetric spatial part.

We will follow the same procedure as for the D2 case above, separating the wave function into spatial, spin
and isospin parts:

Ψ = Φ𝑅Φ𝑆Φ𝑇 (278)

The following subsections discuss those parts.

4He spatial wave function

The spatial part of the 4He ground state wave function depends on the four nucleon coordinates r1, r2, r3
and r4. We can visualize the associated physical system in Figure S46.

Figure S46: Comparison of the pair distribution from the model compared with the pair density from Kamada et al. (2001)
[128].

We are working with the 1𝑆 component and so the helium nucleus is taken to have no orbital angular
momentum. Φ𝑅 can be therefore be represented as:

Φ𝑅 = 𝑁𝑆 𝑢(|r2 − r1|)𝑢(|r3 − r1|)𝑢(|r4 − r1|)𝑢(|r3 − r2|)𝑢(|r4 − r2|)𝑢(|r4 − r3|) (279)

where N𝑆 is the normalization factor. The function 𝑢 is chosen to model what might be expected from a
nucleon-nucleon potential with a “hard core”

𝑢(𝑟) = (𝑟 − 𝑟0)𝑡𝑒−𝛽(𝑟−𝑟0)𝑠 (280)

whose coefficients are determined by integrating the wave function and ensuring its fit to the pair distribution
according do Kamada et al. [128]. This results in the parameters:
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𝛽 = 7.111527099157 fm−1, 𝑠 = 0.335, 𝑡 = 2.168033173083, 𝑟0 = 0.3223838138079 fm (281)

The (radial) pair distribution function is defined according to

𝐶(𝑠) = ⟨Φ𝑅|𝛿(𝑠 − |r21|)|Φ𝑅⟩ (282)

In Figure S47 is shown a comparison of the pair potential for the model wave function with the accurate
4-nucleon ground state 𝛼 wave function of Kamada et al. (2001) [128]. Note that in this optimization we
have fit a simple single configuration wave function so that it has roughly the same pair distribution as the
much more accurate and complicated multi-configuration wave function of Kamada et al.

Figure S47: Model pair distribution function (blue) compared with the accurate pair distribution of Kamada et al. (2001)
[128].

Spin and isospin part of the 4He molecular wave function

Just like D2 system, 4He system has some isospin and spin constraints. The total isospin has value 𝑇 = 0
and for spin we take the 1𝑆 state so that 𝑆 = 0.
We can construct the spin and isospin part of the 4He nucleus by considering it to be composed of two
deuterons whose individual spin is 1 but whose combined spin is 0.

We can therefore build on the result from the D2 molecule for the isospin part, namely:
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Φ𝑇 = ∣𝑇 = 0, 𝑀𝑇 = 0⟩
12;34

= ∣𝑇 = 0, 𝑀𝑇 = 0⟩
12

∣𝑇 = 0, 𝑀𝑇 = 0⟩
34

= (𝑝1𝑛2 − 𝑛1𝑝2√
2

)(𝑝3𝑛4 − 𝑛3𝑝4√
2

)

= 1
2 (𝑝1𝑛2𝑝3𝑛4 − 𝑝1𝑛2𝑛3𝑝4 − 𝑛1𝑝2𝑝3𝑛4 + 𝑛1𝑝2𝑛3𝑝4)

(283)

For the spin part we proceed similarly:

Φ𝑆 = ∣𝑆 = 0, 𝑀𝑆 = 0⟩
12;34

= 1√
3∣𝑆 = 1, 𝑀𝑆 = 1⟩

12
∣𝑆 = 1, 𝑀𝑆 = −1⟩

34

− 1√
3∣𝑆 = 1, 𝑀𝑆 = 0⟩

12
∣𝑆 = 1, 𝑀𝑆 = 0⟩

34

+ 1√
3∣𝑆 = 1, 𝑀𝑆 = −1⟩

12
∣𝑆 = 1, 𝑀𝑆 = 1⟩

34

= 1√
3 ↑1↑2↓3↓4

− 1√
12

(↑1↓2↑3↓4 + ↑1↓2↓3↑4 + ↓1↑2↑3↓4 + ↓1↑2↓3↑4)

+ 1√
3 ↓1↓2↑3↑4

The same antisymmetrization procedure that is used for the D2 molecule can also be used for the 4He case.

Construction of J states

For the cases where it is important to consider the total angular momentum 𝐽 , we can construct the
appropriate states using Clebsch-Gordan coefficients according to

|𝐽𝑀𝐽⟩ = ∑
𝑀

∑
𝑀𝑆

|𝐿, 𝑀⟩|𝑆, 𝑀𝑆⟩⟨𝐿, 𝑀; 𝑆, 𝑀𝑠∣𝐽 , 𝑀𝐽⟩ (284)

For further details on constructing the D2 and 4He wave functions, see [122].
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S6.2 Known 4He∗ excited states

Our discussion of excitation transfer and related processes will necessarily involve a consideration of the
excited 4He∗ states, which motivates a discussion of these states in this section. Much theoretical and
experimental work by different groups has led to a clarification of some of the states, with a detailed review
having been given by Tilley and coworkers [107]. To given an overview, we start with the level diagram in
Figure S48 taken from this reference.
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Figure S48: 4He ground state and 4He∗ excited states from [107]. The energies of free p+t, n+3He and molecular D2 are
indicated on the left. The levels in the middle have isospin 𝑇 = 0, and the levels on the right have isospin 𝑇 = 1. Even parity
states are indicated in blue, and odd parity states are in red. Note the different variations of the D2 state, as discussed in
sections S5.1 and S6.1 and shown in Figure S8, which are however very close in energy.

We note at the outset that all of the excited 4He states are very unstable, with lifetimes shorter than 10−20

seconds. Note that ultimately there is a lot of mixing between different contributing configurations, which
results in a complicated level structure.
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A few states with relatively simple interpretations

Since the deuteron has isospin zero, excited 4H∗ states which are mostly d+d (i.e., 2+2) must have isospin
zero. The level at 27.42 MeV has been identified as mostly d+d 𝑇 = 0 5S 𝐽𝜋 = 2+. This state is different
than the molecular D2

5S 𝐽𝜋 = 2+ state near 23.85 MeV, but it shares spin, isospin, total angular momentum,
and parity quantum numbers.

There are three odd parity isospin zero states up near 28.5 MeV which have been identified as being primarily
d+d 𝑇 = 0 3P. These states are potentially interesting to us in part because they share spin, isospin, total
angular momentum, and parity quantum numbers with the molecular D2

3P 𝐽𝜋 = 0, 1, 2 states (see section
S6.1), and because interactions that couple to the molecular D2

3P 𝐽𝜋 = 0, 1, 2 states also couples to these
4He∗ excited states.

Another state which draws our attention is the state at 24.25 MeV which is mostly (3+1) 𝑇 = 0 3P 𝐽𝜋 = 1−.
It may seem odd that this state is labeled as 3+1, since we usually think of p+t and n+3He for configurations
made up of mass 3 and mass 1. The issue here is that if we try to construct fully antisymmetric states with
quantum numbers 𝑇 = 0 3P 𝐽𝜋 = 1−, we find that it is impossible to make clean p+t or n+3He states. But
it is possible to construct a state based on a superposition of p+t and n+3He states. Because of this, we
use the notation 3+1. Since the constituent p+t and n+3He particles can tunnel apart quickly, this state is
very unstable, with a lifetime of about 10−21 seconds. This state is of interest to us since the d+d 𝑇 = 0
3P 𝐽𝜋 = 1− state can mix with it, which opens up a decay channel where the canonical 3+1 fusion products
result from the decay (see also sections S6.5 and S6.6 as well as section S5.15).

Model for the unstable d+d 𝑇 = 0 3P 𝐽𝜋 = 1− state at 28.37 MeV

We consider a simple model for the unstable d+d 𝑇 = 0 3P 𝐽𝜋 = 1− state at 28.37 MeV based on two
deuterons that interact through an attractive nuclear potential and repulsive Coulomb potential. In this
calculation we focus on the tunnel decay which is dominant, and neglect the coupling to the 3+1 𝑇 = 0 3P
𝐽𝜋 = 1− state at 24.25, which is responsible for the decay by 3+1 fusion of this d+d state.

To model the unstable state we solve for the radial wave function that describes the separation between the
two deuterons. We can write

𝐸 𝑃(𝑟) = ( − ℏ2

2𝜇
𝑑2

𝑑𝑟2 + ℏ2𝐿(𝐿 + 1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝐿

𝑁 (𝑟))𝑃(𝑟) (285)

subject to the boundary conditions

𝑃(0) = 0
𝑃(𝑟) → 𝐴𝑒𝑖𝑘𝑟 (286)

where 𝐸 and the wave vector 𝑘 are both complex.

For the potentials, we use the same as in section S6.1. Specifically, we use the Kolos molecular Coulomb
potential (Eq. 274) and the Weller nuclear potential (Eq. 273) for the 3𝑃 channel. Note that at short range,
the molecular potential follows the simple Coulomb scaling. The combined potential is illustrated by the
green line in Figure S42.

We developed a simulation code for this problem, utilizing a 3 point scheme on a non-uniform grid based on a
shooting method (see https://github.com/project-ida/nuclear-reactions for details). The resulting
complex energy eigenvalue are
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𝐸𝑟 = 4.61 MeV

𝐸𝑖 = − 1.97 MeV (287)

The energy relative to the ground state is

𝐸 = 4.6168 + 23.8465 = 28.463 MeV (288)

The d+d state energy value calculated this way matches reasonably well with the value reported in [107] of
28.37 MeV, giving us confidence in this method. For the line width we obtain

Δ𝐸 = − 2𝐸𝑖 = 3.94 MeV (289)

which also is in good agreement with the value (reported for tunneling) in [107] of 3.92 MeV.

The radial probability density for this unstable state is shown in Figure S49.

Figure S49: Radial probability density for the d+d 𝑇 = 0 3P 𝐽𝜋 = 1− state at 28.37 as a function of 𝑟. The probability has
been noramlized by integrating out to 4.4 fm and setting the result to equal 1.

If we compare Figure S49 above to the molecular D2
3P state calculated in section S6.1 (see Figure S45),

we see that the molecular state can be seen as an admixture with partial occupation of this unstable 4He∗

excited state.
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Model for the unstable (3+1) 𝑇 = 0 3P 𝐽𝜋 = 1− state at 24.25 MeV

We consider a similar model for the unstable (3+1) 𝑇 = 0 3P 𝐽𝜋 = 1− state at 24.25 MeV. As above, we
work with the radial equation

𝐸 𝑃(𝑟) = ( − ℏ2

2𝜇
𝑑2

𝑑𝑟2 + ℏ2𝐿(𝐿 + 1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝐿

𝑁 (𝑟))𝑃(𝑟) (290)

subject to the boundary conditions

𝑃(0) = 0
𝑃(𝑟) → 𝐴𝑒𝑖𝑘𝑟 (291)

In this case, for the 3+1 nuclear potential model, we use

𝑉 𝑆,𝐿
𝑁 (𝑟) = 𝑉0𝑒−𝛼𝑟2 (292)

whose parameters can be seen in Table 3 [129] :

State 𝑉0 (MeV) 𝛼 (fm−2)
1𝑃 -8.0 0.03

Table 3: Nuclear potential parameters

where we note that in the absence of a p+t 3P potential, we use the potential for 1P.

The 3+1 Coulomb potential is taken to be half of the p+t Coulomb potential because there is no Coulomb
potential for the n+3He component.

The energy eigenvalue that results is

𝐸𝑟 = 4.15 MeV

𝐸𝑖 = − 2.31 MeV (293)

The energy relative to the ground state is

𝐸 = 4.1538 + 20.19574 = 24.350 MeV (294)

where 20.19574 MeV is half the combined mass energy of t+p and n+3He.

The 3+1 state energy value calculated this way matches reasonably well with the value reported in [107] of
24.25 MeV. For the line width we obtain

Δ𝐸 = − 2𝐸𝑖 = 4.61 MeV (295)

which is lower than the value reported for tunneling in [107] of 5.95 MeV.

The radial probability density for this unstable state is shown in Figure S49.

We will come back to such 4He∗ excited states in sections S6.5 and S6.6 as well as section S5.15.
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Figure S50: Radial probability density for the 3+1 𝑇 = 0 3P 𝐽𝜋 = 1− state at 24.25 as a function of 𝑟. The probability has
been noramlized by integrating out to 6.65 fm and setting the result to equal 1.
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S6.3 Gamow factor and fusion rate calculations

In section S6.1, the D2 nuclear wave functions were presented, at the center of which is the D2 molecular
wave function that governs the spatial orientation of the two deuteron pairs relative to each other (and
therefore determines the mean distance between them).

Eq. 272 represents the radial wave equation as a form of the Schrödinger equation for spherically symmetric
systems which we repeat here for convenience

𝐸 𝑃𝐷𝐷(𝑟) = ( − ℏ2

2𝜇
𝑑2

𝑑𝑟2 + ℏ2𝐿(𝐿 + 1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝐿

𝑁 (𝑟))𝑃𝐷𝐷(𝑟) (296)

This equation forms the basis for fusion rate estimates from deuterons tunneling through the potential
barrier.

This section will discuss two different approaches, each of which has its own sets of merits: a numerical
approach and the so-called WKB approximation.

Naturally, the numerical approach can be expected to be more accurate. However, as we will show at the end
of this section, the WKB approximation performs well too, except for a comparatively small error at short
radii. Nevertheless, there is an important advantage in using the WKB approximation, which is the reason
why it has been used in such fusion rate calculations before: it allows for readily incorporating screening
effects, which are caused by changes to the molecular potential due to free electrons (as represented by the
value of the screening potential 𝑈𝑒).

Obtaining fusion rates based on the WKB approximation at different values of the screening potential 𝑈𝑒
is shown later in the section. In the end, we opt for a combined approach that draws on the strengths of
both approaches: working with an unscreened base rate obtained from numerical integration, which is then
adjusted to account for different screening potential values by a sort of ”screening correction factor” that
can be readily obtained from the WKB approach, as shown.

The 1989 Koonin and Nauenberg fusion rate estimate as a reference point

A relevant reference point is a short 1989 article by Koonin and Nauenberg, in which the authors present an
estimate for the spontaneous deuterium fusion rate at room temperature, based on a numerical approach.

The rate reported by Koonin and Nauenberg 1989 [2] is

𝛾𝐷𝐷 = 3 × 10−64 s−1 (297)

Note, however, that parts of the potential in Eq. 296 are state-dependent (see S6.1 for an overview of
different states), which Koonin and Nauenberg neglect to take into account. Their estimate draws on the
molecular part of the barrier only—an issue that we later remedy in our version of these calculations below.

Numerical approach to fusion rate estimation following Koonin and Nauenberg

From the Koonin and Nauenberg perspective, the fusion rate is the probability of being at small radius in the
probability density of the wave function. Koonin and Nauenberg used 10 fm as the target radius. Therefore

𝛾𝐷𝐷 = 𝐴|𝜓(10 fm)|2 (298)
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where A is a scaling factor that Koonin and Nauenberg give as

𝐴 = 1.5 × 10−16 cm3

sec (299)

For the case of 𝐿 = 0 and 𝑀 = 0, we can take

𝜓(𝑟) = 𝑃𝐷𝐷(𝑟)
𝑟 𝑌𝐿𝑀(𝜃, 𝜙) = 1√

4𝜋
𝑃𝐷𝐷(𝑟)

𝑟 (300)

Evaluating 𝑃𝐷𝐷 at 10 fm (by solving Eq. 296, leaving out the nuclear potential as Koonin and Nauenberg
did) yields

𝑃𝐷𝐷(10 fm) = 6.9 × 10−36 cm−1/2 (301)

which results in

𝜓2(10 fm) = 3.8 × 10−48 cm−3 (302)

and

𝛾𝐷𝐷 = 5.7 × 10−64 s−1 (303)

A state-specific numerical approach: fusion rate estimation for the molecular D2
5S state and

the localized 4He∗ 5S state

We expect the 1S and 5S states of molecular D2 to decay the fastest, since there is no centripetal potential
contribution to the overall barrier. We begin with the 5S state.

To evaluate the spontaneous fusion rate for the molecular 5S state, we make use of a numerical solution for
the radial molecular wave function (orange line in Figure S43) to determine the fraction of the wave function
that’s present in the (off-resonant) localized 4He∗ state (Figure S44 at 𝑟 < 4.1 fm). This localized excited
state is an admixture with the highly unstable 𝑑 + 𝑑,5 𝑆 𝑇 = 0 𝐽𝜋 = 2+ state (see section S6.2), and so will
rapidly decay.

The spontaneous fusion rate for the molecular 5S state is then given by:

𝛾𝐷𝐷,5𝑆 = 𝑃𝑑+𝑑,5𝑆𝛾𝑑+𝑑,5𝑆 (304)

where 𝑃𝑑+𝑑,5𝑆 is the probability of occupation of the highly unstable 4He∗ state, and 𝛾𝑑+𝑑,5𝑆 is the associated
decay rate.

The probability of occupation is obtained by integrating the wave function seen in Figure S44 between
0 < 𝑟 < 4.1 fm. The result is

𝑃𝑑+𝑑,5𝑆 = 4.9 × 10−85 (305)

The line width of the localized 𝑑 + 𝑑,5 𝑆 𝐽𝜋 = 2+ state on resonance at 27.42 MeV [107] is
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ℏ𝛾𝑑+𝑑,5𝑆 = 0.25 + 0.23 MeV = 0.48 MeV (306)

The associated decay rate and lifetime is

𝛾𝑑+𝑑,5𝑆 = 0.48 MeV
ℏ = 7.3 × 1020 s−1

𝜏𝑑+𝑑,5𝑆 = ℏ
0.48 MeV = 1.4 × 10−21 sec (307)

This leads to an overall fusion decay rate for the D2 molecular 5S state of

𝛾𝐷𝐷,5𝑆 = 4.9 × 10−85 0.48 MeV
ℏ = 3.6 × 10−64 s−1 (308)

This state-specific rate is compatible with the Koonin and Nauenberg rate of 3 × 10−64 s−1 for 𝛾𝐷𝐷 [2].

A state-specific numerical approach: fusion rate estimation for the molecular D2
3P state and

the localized 4He∗ 3P state

Since the molecular D2
3P states play such an important role in this paper, it is natural to be interested

in the associated spontaneous fusion decay rate. We expect the rate to be slower than for the D2 S states
since there is one unit of angular momentum and an associated centripetal potential barrier. We can use an
approach similar to what we did above for the 5S state.

For the 3P state we make use of the green line in Figure S43 to determine the fraction of the wave function
that’s present in the (off-resonant) localized 4He∗ state (Figure S45 at 𝑟 < 6.4 fm). This localized excited
state is an admixture with the highly unstable 𝑑 + 𝑑,3 𝑃 𝐽𝜋 = 1− state (see Figure S49 in section S6.2), and
so will rapidly decay.

The spontaneous fusion rate for the molecular 3P state is then given by:

𝛾𝐷𝐷,3𝑃 = 𝑃𝑑+𝑑,3𝑃 𝛾𝑑+𝑑,3𝑃 (309)

where 𝑃𝑑+𝑑,3𝑃 is the probability of occupation of the highly unstable 4He∗ state, and 𝛾𝑑+𝑑,3𝑃 is the associated
decay rate.

The probability of occupation is obtained by integrating the wave function seen in Figure S45 between
0 < 𝑟 < 6.4 fm. The result is

𝑃𝑑+𝑑,3𝑃 = 2.3 × 10−86 (310)

The line width of the localized 4He∗ 3P 𝐽𝜋 = 1− state on resonance at 28.37 MeV [107] is

ℏ𝛾𝑑+𝑑,3𝑃 = 0.07 + 0.08 MeV = 0.15 MeV (311)

The associated decay rate and lifetime is

𝛾𝑑+𝑑,3𝑃 = 0.15 MeV
ℏ = 2.3 × 1020 s−1
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𝜏𝑑+𝑑,3𝑃 = ℏ
0.15 MeV = 4.4 × 10−21 sec (312)

This leads to an overall fusion decay rate for the D2 molecular 3P 𝐽𝜋 = 1− state of

𝛾𝐷𝐷,3𝑃 = 2.3 × 10−86 0.15 MeV
ℏ = 5.2 × 10−66 s−1 (313)

We see that the centripetal potential (along with the difference in nuclear potential) leads to a spontaneous
fusion decay rate that’s substantially smaller than for the 5S state as expected.

WKB approximation approach to fusion rate estimation

An alternative to the numerical approach of solving the radial wave equation (Eq. 296) is to draw on the
WKB approximation.

Here, the probability of two deuterons being at close proximity, as previously obtained by numerical in-
tegration, (𝑃𝑑+𝑑,5𝑆 in the case above) is replaced by the analytical expression for the so-called tunneling
probability:

𝑇 ≈ 𝑒−2𝐺 (314)

where

𝐺 = ∫
𝑟2

𝑟1

√2𝑚
ℏ2 [𝑉 (𝑟) − 𝐸] 𝑑𝑟 (315)

G is known as the Gamow factor.

To obtain an estimate for the fusion rate 𝛾𝐷𝐷 from the tunneling probability 𝑇 , we need to multiply by a
volume ratio factor 𝑣𝑛𝑢𝑐/𝑣𝑚𝑜𝑙 and by the decay rate of the unstable 4He∗:

𝛾𝐷𝐷 ≈ 𝑇 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝛾4He∗ (316)

where 4He∗ is a specific 4He excited state such as 𝑑 + 𝑑,5 𝑆.
Note that 𝛾𝐷𝐷 is state-specific (since all factors are state-specific).

The volume factor acts as a correction factor since the Gamow approximation is designed to work in 1D and
is here applied to a 3D problem.

Volume ratio

We begin by defining the equilibrium bond lengths for different electronic states of a D2 molecule in terms
of the Bohr radius (𝑎0):

• For the S state: 𝑅0𝑆 = 1.401080 × 𝑎0

• For the P state: 𝑅0𝑃 = 𝑅0𝑆 + 0.001 × 10−10 m

• For the D state: 𝑅0𝐷 = 𝑅0𝑆 + 0.002 × 10−10 m

125



Next, we calculate the de Broglie wavelength of the relative motion (Δ𝑅) using the formula:

Δ𝑅 = 𝑎0√ 𝐼𝐻
ℏ𝜔0𝐷𝐷

√2𝑚𝑒𝑐2

𝑀𝐷𝑐2 (317)

where 𝐼𝐻 is the ionization potential of hydrogen in eV, ℏ𝜔0𝐷𝐷 is the zero-point energy (0.3862729 eV), 𝑚𝑒𝑐2

is the electron mass in MeV, and 𝑀𝐷𝑐2 is the deuteron mass in MeV.

The molecular volumes (𝑣𝑚𝑜𝑙) for the S, P, and D states are computed as follows:

• S: 𝑣𝑚𝑜𝑙 = 2𝜋𝑅0𝑆 (𝜋Δ𝑅2)
• P: 𝑣𝑚𝑜𝑙 = 2𝜋𝑅0𝑃 (𝜋Δ𝑅2)
• D: 𝑣𝑚𝑜𝑙 = 2𝜋𝑅0𝐷 (𝜋Δ𝑅2)

The nuclear volume (𝑣𝑛𝑢𝑐) of the deuterium nucleus is calculated assuming a spherical shape with a radius
of 5 fm:

𝑣𝑛𝑢𝑐 = 4
3𝜋 (5 × 10−15 m)3 (318)

Finally, the volume ratios of the nuclear volume to the molecular volume for the S, P, and D states are
calculated as:

• S: 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.66 × 10−12

• P: 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.65 × 10−12

• D: 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.64 × 10−12

These ratios provide insight into the comparative scale of nuclear and electronic contributions to the physical
structure of the molecule.

Unscreened fusion rate estimates based on the WKB approximation

Combining the above and plugging into Eq. 316 we obtain:

𝛾𝐷𝐷,5𝑆 ∼ 𝑒−2𝐺 (𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

) 𝛾𝑑+𝑑,5𝑆 = 1.6 × 10−66 s−1 (319)

This is low by more than two orders of magnitude, compared to the numerical result.

In order to do better with the WKB approximation, we would need to take account of the scaling of the 1/√𝛼
factor (see Eq. S6.3) in the WKB transformation, and we would want to correct for the error associated
with the WKB approximation itself (both of which are discussed briefly at the end of this section).

This suggests that numerical calculations are more accurate when evaluating wave functions and matrix
elements compared to the WKB approximation based approach. However, we would like to make use of the
WKB approximation in order to get estimates for the effect of different screening potentials, as is discussed
next.
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Applying screening to unscreened fusion rate estimates

Screening can be readily included in the WKB approximation based rate calculation via the screening length
𝜆 [29]:

𝜆 = 1
4𝜋𝜖0

𝑒2

𝑈𝑒
(320)

This results in a screened molecular potential:

𝑉mol,scr = 𝑉mol ⋅ 𝑒 −𝑟
𝜆 (321)

Screened fusion rate estimates based on the WKB approximation

Now fusion rates can be determined—for different screening energies—based on Eq. 316. Obtained values
for the 1S configuration (𝐿 = 0, 𝑆 = 0), the 5S configuration (𝐿 = 0, 𝑆 = 2), 3P configuration (𝐿 = 1,
𝑆 = 1), and the 5D configuration (𝐿 = 2, 𝑆 = 2) are listed in Table 4, 5, 6, 7 respectively.

Values for the 1S configuration will be helpful for comparing with the result of Koonin and Nauenberg 1989
[2]; for the 3P configuration for calculations involving relativistic and electric dipole coupling; and for the
5D configuration for calculations involving magnetic dipole coupling.

The last column of each table shows the effect of screening on the tunneling probability via the expression
𝑒Δ𝐺𝑠𝑐𝑟 where Δ𝐺𝑠𝑐𝑟 = 𝐺𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 − 𝐺𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑.

Table 4: Gamow factors, fusion rates and screening parameters for the 1S state (𝐿 = 0, 𝑆 = 0) of D2.

𝑈𝑒(𝑒𝑉 ) 𝐺 exp(−𝐺) exp(−2𝐺) Fusion rate 𝛾𝐷𝐷 (s−1) Δ𝐺𝑠𝑐𝑟 exp(Δ𝐺𝑠𝑐𝑟)
0 88.0 5.78 × 10−39 3.34 × 10−77 1.62 × 10−67 0 1
50 66.7 1.08 × 10−29 1.16 × 10−58 5.63 × 10−49 -21.3 1.86 × 109

100 57.7 8.66 × 10−26 7.5 × 10−51 3.64 × 10−41 -30.3 1.5 × 1013

150 51.6 4.09 × 10−23 1.67 × 10−45 8.11 × 10−36 -36.5 7.08 × 1015

200 46.9 4.49 × 10−21 2.01 × 10−41 9.78 × 10−32 -41.2 7.77 × 1017

250 43.1 1.87 × 10−19 3.48 × 10−38 1.69 × 10−28 -44.9 3.23 × 1019

300 40.1 3.87 × 10−18 1.5 × 10−35 7.28 × 10−26 -48.0 6.7 × 1020

350 37.6 4.79 × 10−17 2.3 × 10−33 1.12 × 10−23 -50.5 8.30 × 1021

Table 5: Gamow factors, fusion rates and screening parameters for the 5S state (𝐿 = 0, 𝑆 = 2) of D2.

𝑈𝑒(𝑒𝑉 ) 𝐺 exp(−𝐺) exp(−2𝐺) Fusion rate 𝛾𝐷𝐷 (s−1) Δ𝐺𝑠𝑐𝑟 exp(Δ𝐺𝑠𝑐𝑟)
0 88.0 5.8 × 10−39 3.36 × 10−77 1.63 × 10−67 0 1
50 66.7 1.08 × 10−29 1.17 × 10−58 5.67 × 10−49 -21.3 1.86 × 109

100 57.7 8.69 × 10−26 7.55 × 10−51 3.67 × 10−41 -30.3 1.5 × 1013

150 51.5 4.10 × 10−23 1.68 × 10−45 8.17 × 10−36 -36.5 7.08 × 1015

200 46.8 4.50 × 10−21 2.03 × 10−41 9.84 × 10−32 -41.2 7.77 × 1017

250 43.1 1.87 × 10−19 3.51 × 10−38 1.70 × 10−28 -44.9 3.23 × 1019

300 40.1 3.88 × 10−18 1.51 × 10−35 7.32 × 10−26 -48.0 6.7 × 1020

350 37.6 4.81 × 10−17 2.31 × 10−33 1.12 × 10−23 -50.5 8.30 × 1021
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Table 6: Gamow factors, fusion rates and screening parameters for the 3P state (𝐿 = 1, 𝑆 = 1) of D2.

𝑈𝑒(𝑒𝑉 ) 𝐺 exp(−𝐺) exp(−2𝐺) Fusion rate 𝛾𝐷𝐷 (s−1) Δ𝐺𝑠𝑐𝑟 exp(Δ𝐺𝑠𝑐𝑟)
0 90.4 5.75 × 10−40 3.31 × 10−79 1.61 × 10−69 0 1
50 69.1 1.01 × 10−30 1.03 × 10−60 5.00 × 10−51 21.3 1.76 × 109

100 60.1 7.56 × 10−27 5.71 × 10−53 2.77 × 10−43 30.2 1.31 × 1013

150 54.1 3.09 × 10−24 9.53 × 10−48 4.63 × 10−38 36.2 5.37 × 1015

200 49.9 2.03 × 10−22 4.14 × 10−44 2.01 × 10−34 40.4 3.54 × 1017

250 46.4 6.94 × 10−21 4.82 × 10−41 2.34 × 10−31 43.9 1.21 × 1019

300 43.6 1.22 × 10−19 1.49 × 10−38 7.21 × 10−29 46.8 2.12 × 1020

350 41.2 1.28 × 10−18 1.65 × 10−36 8.00 × 10−27 49.2 2.23 × 1021

Table 7: Gamow factors, fusion rates and screening parameters for the 5D state (𝐿 = 2, 𝑆 = 2) of D2.

𝑈𝑒(𝑒𝑉 ) 𝐺 exp(−𝐺) exp(−2𝐺) Fusion rate 𝛾𝐷𝐷 (s−1) Δ𝐺𝑠𝑐𝑟 exp(Δ𝐺𝑠𝑐𝑟)
0 94.8 6.58 × 10−42 4.33 × 10−83 2.10 × 10−73 0 1
50 73.6 1.04 × 10−32 1.08 × 10−64 5.24 × 10−55 21.2 1.58 × 109

100 64.9 6.59 × 10−29 4.35 × 10−57 2.11 × 10−47 29.9 1.00 × 1013

150 59.6 1.37 × 10−26 1.88 × 10−52 9.14 × 10−43 35.3 2.09 × 1015

200 55.3 9.30 × 10−25 8.66 × 10−49 4.20 × 10−39 39.5 1.41 × 1017

250 52.0 2.74 × 10−23 7.53 × 10−46 3.66 × 10−36 42.9 4.17 × 1018

300 49.2 4.12 × 10−22 1.70 × 10−43 8.25 × 10−34 45.6 6.26 × 1019

350 47.0 3.75 × 10−21 1.41 × 10−41 6.83 × 10−32 47.8 5.70 × 1020

Combining the numerical approach with screening factors obtained from the WKB approxi-
mation approach

We found that the numerical integration approach to the radial wave equation Eq. 296 yields more accurate
results. At the same time, we appreciate how screening effects can be determined via the WKB approximation
approach. Here, we combine results from both approaches, by starting out with the (unscreened) Koonin
and Nauenberg fusion rate and applying screening factors obtained from the WKB approximation appraoch
for different screening potentials. This is represented by the expression:

𝛾𝐷𝐷,𝑠𝑐𝑟 = 𝛾𝐷𝐷𝑒2Δ𝐺𝑠𝑐𝑟 (322)

The results are shown in Table 8 (screened Koonin and Nauenberg rates):

Table 8: Screening applied to the DD fusion base rate obtained from numerical integration (drawing on 1S
screening values, consistent with Koonin and Nauenberg 1989).

𝑈𝑒 (eV) Δ𝐺𝑠𝑐𝑟 Fusion rate (s−1)
0 0.0 3.00 × 10−64

50 21.3 9.51 × 10−46

100 30.3 6.24 × 10−38

150 36.5 1.52 × 10−32

200 41.2 1.83 × 10−28

250 44.9 3.00 × 10−25

300 48.0 1.48 × 10−22

350 50.5 2.19 × 10−20

128



Characterizing the validity of the WKB approximation

Since we have numerical solutions for the D2 radial wave functions, we can check to see how good the WKB
approximation is for molecular D2 nuclear states. In the WKB approximation, we can relate the wave
function to a spatially-dependent Gamow factor according to

𝑃𝐷𝐷(𝑟) ≈ 𝐶
√𝛼(𝑟)

𝑒−𝐺(𝑟) (323)

with

𝛼(𝑟) = √2𝜇(𝑉 (𝑟) − 𝐸)
ℏ2

𝐺(𝑟) = ∫
𝑟𝑚𝑎𝑥

𝑟
𝛼(𝑟′)𝑑𝑟′ (324)

in the forbidden region. Here 𝐶 is a normalization constant. Results are shown in Figure S51. We see that
the WKB approximation performs well away from the fm scale.
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Figure S51: Numerical radial D2 wave function (S-state), calculated with no nuclear potential (red) as a function of radius
in 𝑎0; WKB approximation for the same model (blue).

129



S6.4 Derivation of indirect coupling coefficients in Dicke model excitation trans-
fer

The notion of indirect coupling is simplest in the case of resonant second-order excitation transfer. Consider
a simple excitation transfer problem with two identical two-level systems (TLSs) coupled to a common
oscillator described by the spin-boson Hamiltonian

�̂� = Δ𝐸 𝑠(1)
𝑧
ℏ + Δ𝐸 𝑠(2)

𝑧
ℏ + ℏ𝜔0 ̂𝑎† ̂𝑎 + 𝑉0( ̂𝑎 + ̂𝑎†)𝑠(1)

𝑥
ℏ + 𝑉0( ̂𝑎 + ̂𝑎†)𝑠(2)

𝑥
ℏ (325)

It is possible to develop an approximate solution for the eigenvalue problem

𝐸Ψ = �̂�Ψ (326)

based on a finite basis approximation according to

Ψ = 𝑐1Φ1 + ⋯ + 𝑐6Φ6 (327)

where

Φ1 = ∣ ↑1↓2, 𝑛⟩

Φ2 = ∣ ↓1↓2, 𝑛 − 1⟩

Φ3 = ∣ ↓1↓2, 𝑛 + 1⟩

Φ4 = ∣ ↑1↑2, 𝑛 − 1⟩

Φ5 = ∣ ↑1↑2, 𝑛 + 1⟩

Φ6 = ∣ ↓1↑2, 𝑛⟩

(328)

Resonant excitation transfer for this model would involve a transition from Φ1 to Φ6.

The expansion coefficients satisfy

𝐸𝑐1 = 𝐻11𝑐1 + 𝐻12𝑐2 + 𝐻13𝑐3 + 𝐻14𝑐4 + 𝐻15𝑐5
𝐸𝑐2 = 𝐻21𝑐1 + 𝐻22𝑐2 + 𝐻26𝑐6
𝐸𝑐3 = 𝐻31𝑐1 + 𝐻33𝑐3 + 𝐻36𝑐6
𝐸𝑐4 = 𝐻41𝑐1 + 𝐻44𝑐4 + 𝐻46𝑐6
𝐸𝑐5 = 𝐻51𝑐1 + 𝐻55𝑐5 + 𝐻56𝑐6

𝐸𝑐6 = 𝐻62𝑐2 + 𝐻63𝑐3 + 𝐻64𝑐4 + 𝐻65𝑐5 + 𝐻66𝑐6

(329)

where
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𝐻11 = 𝑛ℏ𝜔0
𝐻22 = − Δ𝐸 + (𝑛 − 1)ℏ𝜔0
𝐻33 = − Δ𝐸 + (𝑛 + 1)ℏ𝜔0

𝐻44 = Δ𝐸 + (𝑛 − 1)ℏ𝜔0
𝐻55 = Δ𝐸 + (𝑛 + 1)ℏ𝜔0

𝐻66 = 𝑛ℏ𝜔0
𝐻12 = 𝐻14 = 𝐻21 = 𝐻26 = 𝐻41 = 𝐻46 = 𝐻62 = 𝐻64 = √𝑛𝑉0

𝐻13 = 𝐻15 = 𝐻31 = 𝐻36 = 𝐻51 = 𝐻56 = 𝐻63 = 𝐻65 =
√

𝑛 + 1𝑉0

(330)

So far this is straightforward, and follows what one might find in a textbook. Suppose now that the excitation
energy of the two-level systems is very much greater than the oscillator energy:

Δ𝐸 ≫ ℏ𝜔0 (331)

The basis state energies of Φ1 and Φ6 are both 𝑛ℏ𝜔0, which is expected to be nearly resonant with the energy
eigenvalue relevant for resonant excitation transfer if the coupling is weak

√𝑛𝑉0
Δ𝐸 ≪ 1 (332)

However, the other basis states are off of resonance by roughly Δ𝐸, so we might consider them to be far off
of resonance. This means that the occupation of these states will be small under conditions where excitation
transfer occurs (which is when the eigenvalue 𝐸 is near 𝑛ℏ𝜔0). We can solve for the (small) expansion
coefficients 𝑐2, ⋯ , 𝑐5 in terms of the (big) expansion coefficients 𝑐1 and 𝑐6 according to

𝑐2 = 𝐻21
𝐸 − 𝐻22

𝑐1 + 𝐻26
𝐸 − 𝐻22

𝑐6

𝑐3 = 𝐻31
𝐸 − 𝐻33

𝑐1 + 𝐻36
𝐸 − 𝐻33

𝑐6

𝑐4 = 𝐻41
𝐸 − 𝐻44

𝑐1 + 𝐻46
𝐸 − 𝐻44

𝑐6

𝑐5 = 𝐻51
𝐸 − 𝐻55

𝑐1 + 𝐻56
𝐸 − 𝐻55

𝑐6

(333)

We can use these relations to eliminate the small expansion coefficients, which results in a contracted version
of the problem that can be summarized as

𝐸𝑐1 = (𝐻11 + Σ11(𝐸))𝑐1 + 𝐻16(𝐸)𝑐6
𝐸𝑐6 = 𝐻61(𝐸)𝑐1 + (𝐻66 + Σ66(𝐸))𝑐6

(334)

where the self-energies are

Σ11(𝐸) = 𝐻12𝐻21
𝐸 − 𝐻22

+ 𝐻13𝐻31
𝐸 − 𝐻33

+ 𝐻14𝐻41
𝐸 − 𝐻44

+ 𝐻15𝐻51
𝐸 − 𝐻55

Σ66(𝐸) = 𝐻62𝐻26
𝐸 − 𝐻22

+ 𝐻63𝐻36
𝐸 − 𝐻33

+ 𝐻64𝐻46
𝐸 − 𝐻44

+ 𝐻65𝐻56
𝐸 − 𝐻55

(335)
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and where the indirect coupling coefficients are

𝐻16(𝐸) = 𝐻61 = 𝐻12𝐻26
𝐸 − 𝐻22

+ 𝐻13𝐻36
𝐸 − 𝐻33

+ 𝐻14𝐻46
𝐸 − 𝐻44

+ 𝐻15𝐻56
𝐸 − 𝐻55

(336)

In this problem there is no direct coupling between Φ1 and Φ6, but from this discussion we see that there is
indirect coupling that is accounted for by the indirect coupling coefficients 𝐻16(𝐸) and 𝐻61(𝐸).
In the literature one sometimes comes across a Hamiltonian of the form

�̂� = �̂�0 + ̂𝑉 (337)

where ̂𝑉 accounts for a small perturbation. In the event that the intermediate states are off of resonance, as
in the example above, the second-order coupling is sometimes described making use of [88]

�̂� → �̂�0 + ̂𝑉 1
𝐸 − �̂�0

̂𝑉 (338)

to indicate this kind of indirect coupling. This is the expression that we work with in section S5.1.
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S6.5 Loss and reduction of destructive interference for transfer from D2 donors
to 4He receivers

In the discussion in section S5.2 we are interested in the transfers from from D2 donors to 4He receivers,
where the energy from a D2/4He transition is used to promote a 4He nucleus from the ground state to the
D2 state. To evaluate excitation transfer rates for transfer from D2 donors to 4He receivers, we need an
estimate for the indirect coupling matrix element between the initial and final states.

The simplest approach to this is to consider only direct D2/4He transitions, ignoring pathways to states where
energy can leave the system irreversibly (loss). In this oversimplified picture, the indirect coupling matrix
element evaluated at second order using this approach is strongly hindered due to destructive interference.
Taking into account loss, however, results in pathway dependent differences in contributions to the indirect
coupling matrix elements. This removes some of the destructive interference and leads to a substantial
indirect coupling effect.

In order for there to be a D2/4He transition in molecular D2 in the kinds of excitation transfer schemes
under discussion, the two deuterons must tunnel to get close at the few fm scale, and then there needs to
be a transition to the ground state mediated by an oscillator. However, when the two deuterons are close
at the fermi scale, there is a possibility that they fuse via the 3+1 state of 4He (see section S6.2), resulting
in energetic p+t or n+3He products. In such a case, the fusion energy is lost from the system because the
energetic products escape irreversibly.

In some of the pathways that contribute to the indirect coupling matrix element, the intermediate state
energy can be high, in which case the fusion tunnelling channel is closed. Because fusion loss depends on
the pathway (in some of the pathways the loss channel is open, and in others the loss channel is closed), the
presence of fusion loss can remove some of the destructive interference.

This section develops a first model for the indirect coupling matrix element that includes this effect. The
scheme described here can be modeled in a non-Hermitian formalism. We can use imaginary potentials to
take into account fusion loss in the pathways where fusion loss occurs. We find that the resulting indirect
coupling matrix element that results is many orders of magnitude larger than what we get if loss were not
included.

For reasons that will become clear in section S5.3, where we compare electric, magnetic and relativistic
coupling strengths, we focus here on the 3P 𝐽𝜋 = 1− channel as an example. This is because we find
relativistic coupling to be the strongest among the available couplings and the relativistic interaction only
couples from the ground state to the 3P 𝐽𝜋 = 1− channels.

Excitation transfer scheme for transfer from D2 donors to 4He receivers

As noted in section S5.2, excitation transfer from D2 donors to 4He receivers involves a downward transition
from D2 to 4He at one site and a matched upward 4He to D2 transition at another site. To develop estimates
for excitation transfer we need to evaluate the indirect coupling matrix between the initial state and final
state.

To evaluate the indirect coupling matrix element between the initial state and final state, we need to take
into account all of the states, couplings, and loss processes. The scheme that results is illustrated in Figure
S52. We see that the fusion loss channels (denoted by red downward arrows) are only open for the 3+1
intermediate states near 0.4 MeV, and not for the 3+1 intermediate states at high energy above 20 MeV.

The fusion loss in this model occurs because there is a coupling matrix element that couples the localized d+d
state to a localized 3+1 state, which tunnel decays (resulting in the canonical deuterium fusion products).
We can think of the 3+1 state as a linear combination of p+t and n+3He states, which have to combine
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into a 3+1 𝑇 = 0 3P 𝐽𝜋 = 1− channel, since the requirement that the overall 4-body wave function need to
be anti-symmetric when any to particles are exchanged. It is not possible to construct individual p+t and
n+3He fully anti-symmetric states in this channel, but it possible to construct a 3+1 state.

This means that in general we can have direct D2/4He transitions as well as indirect D2/(3+1)/4He transitions
for all excitation transfer processes involving the fusion transition. For excitation transfer from D2 donors
to 4He receivers in particular, we can have low-order contributions from two direct transitions, two indirect
transitions, as well as combinations of direct and indirect transitions. The fusion loss channel will be open
for some of the associated pathways, and closed for other pathways.
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Figure S52: Excitation transfer scheme for transfer from D2 donors to 4He receivers including direct and indirect transitions,
as well as loss. The levels involved are indicated in gray, transitions in blue, and loss in red. State energies are indicated relative
to the initial state.

Analysis based on lossy channel wave functions

The approach pursued here uses a model in which loss is included in the calculation of the wave functions
in the different channels. For example, in the D2 𝑇 = 0 3P 𝐽𝜋 = 1− channel of interest, fusion decay due
to coupling to the 3+1 state can be modeled through the use of a (non-Hermitian) complex potential (as
discussed in S6.9). And for modeling tunnel decay in the unstable (3+1) 𝑇 = 0 3P 𝐽𝜋 = 1− channel we
could use boundary conditions at large 𝑟 appropriate for an outgoing wave.

This kind of approach leads to a version of the same scheme illustrated in Figure S53. For simplicity, we
consider the simple case of excitation transfer for a single D2 molecule and a single 4He nucleus both for the
figure and for the analysis that follows, which ignores the associated Dicke factors. It is straightforward to
include the Dicke factors at the end for the more general case.

Contributing direct matrix elements

The 𝑈 ′ matrix element for the direct D2/4He transition is evaluated with an imaginary potential to take
into account fusion loss. More specifically, the loss arises from self-energy terms resulting from coupling
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Figure S53: Excitation transfer scheme for transfer from D2 donors to 4He receivers including direct and indirect transitions,
where loss and tunnelling is included in the calculation of the transition matrix elements.

to the 3+1 state. The 𝑈 version is evaluated without an imaginary potential, since this loss pathway is
energetically forbidden. Again, the excitation transfer mediating coupling considered here is relativistic
coupling (as discussed in section S6.7), resulting in the a ⋅ 𝑐P matrix element.

In the absence of Dicke factors, 𝑈 and 𝑈 ′ are

𝑈 = ⟨D2|a ⋅ 𝑐P|4He⟩, no loss

𝑈 ′ = ⟨D2|a ⋅ 𝑐P|4He⟩, with loss (339)

The momentum operator P creates and destroys oscillator quanta; however, our focus here is on the nuclear
part of the problem.

Similarly, the 𝑉 ′ matrix element is evaluated using complex outgoing waves to take into account tunnel
decay of the 3+1 state, and the 𝑉 matrix element is evaluated with no tunnel decay. Once again, in the
absence of Dicke factors we can write

𝑉 = ⟨(3 + 1)|a ⋅ 𝑐P|4He⟩, no tunneling

𝑉 ′ = ⟨(3 + 1)|a ⋅ 𝑐P|4He⟩, with tunneling (340)

Note that the reduction of destructive interference in this scheme comes from the difference between 𝑈 and
𝑈 ′, and from 𝑉 and 𝑉 ′. Because loss is present in some channels and not in others, terms that contribute
at lowest-order in perturbation theory do not cancel.

Finally, for the 𝑊 matrix element we can write

𝑊 = ⟨D2|𝑉𝑠𝑡𝑟𝑜𝑛𝑔 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏|(3 + 1)⟩ (341)
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where 𝑉𝑠𝑡𝑟𝑜𝑛𝑔 +𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏 represents the combined potential that includes contributions from the strong force
and Coulomb force. In a more sophisticated treatment we would develop different 𝑊 matrix elements based
on wave functions at the nuclear scale evaluated with loss or without loss. However, for simplicity here, we
will model 𝑊 to be the same for all couplings in the model.

Now that we have defined all the parameters, we are in principle in a position to calculate the different
pathways in Figure S53 and develop a sense of how much destructive interference is reduced by the 3+1
fusion loss.

Estimating asymmetries between pathways

The most important parameters involved in measuring the amount of destructive interference are 𝜂𝑈 = 𝑈 ′/𝑈
and 𝜂𝑉 = 𝑉 ′/𝑉 . These parameters give us a sense of the asymmetries between upper and lower pathways
in Figure S53. In this subsection, we will calculate those ratios.

For 𝑈 ′/𝑈 , we can use the numerical calculations of the a-matrix element for the D2/4He transition from
S6.9. 𝑈 is calculated in the usual way yielding (here for the state 3P 𝐽 = 1 𝑀𝐽 = 0)

𝑈 ∝ ⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = ̂i𝑧 0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (342)

and 𝑈 ′ is calculated by using imaginary potentials to represent loss, yielding (again for state 3P 𝐽 = 1
𝑀𝐽 = 0)

𝑈 ′ ∝ ⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = ̂i𝑧 (0.0362 + 𝑖0.000477) √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (343)

We can then write for 𝜂𝑈

𝜂𝑈 = 𝑈 ′

𝑈 = 0.0362 + 𝑖0.000477
0.0362 = 1.000 + 𝑖0.013 (344)

and

|1 − 𝜂𝑈 | = 0.013 (345)

For 𝑉 ′/𝑉 we we need the a-matrix element for the (3+1)/4He transition. We have developed numerical
calculations for this transition based on a construction similar to that described in S6.9 using an approximate
3+1 state wave function for the no-loss case. The result for 𝑉 , i.e., the no loss case, is (for state 3P 𝐽 = 1
𝑀𝐽 = 0)

𝑉 ∝ ⟨Ψ[4He]|a|(3 + 1), Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = − ̂i𝑧 0.0030 (346)

and 𝑉 ′ is calculated by using imaginary potentials to represent loss, yielding (again for the 3P 𝐽 = 1 𝑀𝐽 = 0
state)

𝑉 ′ ∝ ⟨Ψ[4He]|a|(3 + 1), Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = − ̂i𝑧 (0.00035 + 𝑖0.00017) (347)

We can then write for 𝜂𝑉
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𝜂𝑉 = 𝑉 ′

𝑉 = 0.00035 + 𝑖0.00017
0.00030 = 1.16 − 𝑖0.55 (348)

and

|1 − 𝜂𝑉 | = 0.57 (349)

Discussion

Recall that |1 − 𝜂| is defined such that in the case of complete destructive interference |1 − 𝜂| = 0 and in
the case of ideal loss (and complete breakage of destructive interference) |1 − 𝜂| = 1. We saw above that
many pathways need to be considered and their relative contributions. However, in order to build some
intuition, we estimated the asymmetry ratios for U and V based pathways. The result of this exercise was
|1 − 𝜂𝑈 | = 0.013 and |1 − 𝜂𝑉 | = 0.57. This prompted us to estimate, in first approximation, an initial overall
|1 − 𝜂| of 0.1. This is the value that we used in rate estimates in section S5.3 (Eq. 81).

A more detailed approach, which we undertook subsequently, is briefly laid out below and is intended to be
pursued in future work. Our first rough estimation, based on this approach, suggests that the reduction of
destructive interference is substantially higher than the initially assumed |1 − 𝜂| of 0.1. This suggests that
the estimated rates may in fact be higher and that our initial estimate was a conservative one.

Outlook towards more detailed estimates

To develop more detailed estimates for excitation transfer rates we need to evaluate the indirect coupling
matrix between the initial state and final state. This involves taking into account all of the states, couplings,
and loss processes. There are some technical issues associated with this, since this system cannot be described
with two-level systems. The leading order contribution to the indirect coupling matrix element for this model
is

𝐻19 → |𝑈 ′|2 − |𝑈|2
Δ𝑀𝑐2 + 2𝑈𝑉 − (𝑈 ′)∗𝑉 ′ − 𝑈 ′(𝑉 ′)∗

Δ𝑀𝑐2 ( 𝑊
𝛿𝑀𝑐2 ) + |𝑉 ′|2 − |𝑉 |2

Δ𝑀𝑐2 ( 𝑊
𝛿𝑀𝑐2 )

2

= (|𝜂𝑈 |2 − 1) 𝑈2

Δ𝑀𝑐2 + (2 − 𝜂∗
𝑈𝜂𝑉 − 𝜂𝑈𝜂∗

𝑉 ) 𝑈𝑉
Δ𝑀𝑐2 ( 𝑊

𝛿𝑀𝑐2 ) + (|𝜂𝑉 |2 − 1) 𝑉 2

Δ𝑀𝑐2 ( 𝑊
𝛿𝑀𝑐2 )

2 (350)

The first term in Eq. 350 is due to direct D2/4He transitions on both the donor and receiver side—this
is the only term considered in section S5.3. Note that for our case, where |𝜂𝑈 | ≈ 1, the term (|𝜂𝑈 |2 − 1)
approximates to 2(Re(𝜂𝑈) − 1), as used in Eq. 75.

The last term in in Eq. 350 is due to indirect D2/(3+1)/4He transitions on both the donor and receiver side;
and the second term is due to combinations of direct and indirect transitions.

The energy differences are

Δ𝑀𝑐2 = 2𝑀𝑑𝑐2 − 𝑀4𝐻𝑒𝑐2 = 23.85 MeV

𝛿𝑀𝑐2 = 𝑀3+1𝑐2 − 2𝑀𝑑𝑐2 = 0.40 MeV (351)
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We are familiar with Δ𝑀𝑐2 being the fusion transition energy. To estimate the smaller energy difference
𝛿𝑀𝑐2 we make use of the 4He∗ 3+1 𝑇 = 0 𝐽𝜋 = 1− state at 24.25 MeV listed in [107].

As to the remaining variables, estimates for 𝑈 and 𝑈 ′ as well as 𝑉 and 𝑉 ′ are given in terms of the a-matrix
elements above and involves averaging over the oscillator part of the wavefunction as is done in section S6.15.
What remains is to calculate 𝑊 . We have not yet developed a calculation for this, however, we can develop
an estimate for the magnitude of the matrix element based on the calculations in [107].

The idea here is that the fusion loss rate for the microscopic d+d 4He∗ 𝑇 = 0 3P 𝐽𝜋 = 1− state at 28.37
MeV is

ℏ𝛾𝑑+𝑑,3𝑃 = 0.15 MeV (352)

This is a result of coupling with the (3+1) 4He∗ 𝑇 = 0 3P 𝐽𝜋 = 1− state at 24.25 MeV, for which the
tunneling rate is

ℏ𝛾𝑡𝑢𝑛𝑛𝑒𝑙 = 5.95 MeV (353)

We can use these numbers to extract a magnitude for the coupling matrix element

|⟨𝑑 + 𝑑|𝑉𝑠𝑡𝑟𝑜𝑛𝑔 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏|(3 + 1)⟩| = 1.15 MeV (354)

If we assume that this (local) matrix element is essentially the same as the molecular version ⟨D2|𝑉𝑠𝑡𝑟𝑜𝑛𝑔 +
𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏|(3 + 1)⟩ corrected for the (off-resonant) occupation of the local d+d state, we can write

|𝑊| = √𝑝𝑑+𝑑,3𝑃 |⟨𝑑 + 𝑑|𝑉𝑠𝑡𝑟𝑜𝑛𝑔 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏|(3 + 1)⟩|

= (102√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)(1.15 MeV) (355)

We now plug the estimates into 𝐻19 and compare with the our initial approximation of (|𝜂|2 − 1) 𝑈2
Δ𝑀𝑐2

(with 𝜂 = 0.9). We find that the rates derived from our initial approximation are about 300 times smaller
compared to rates based on the full 𝐻19. This makes our initial estimate a conservative one.
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S6.6 Loss and reduction of destructive interference for transfer from D2 donors
to Pd receivers

In the discussion in section S5.4 we are interested in excitation transfer from the D2/4He fusion transition
to a Pd∗/Pd transition, where the energy from a D2/4He transition is used to promote a Pd nucleus from
the ground state to a Pd∗ state. To evaluate excitation transfer rates (as done in section S5.5) we need an
estimate for the indirect coupling matrix element between the initial and final states.

Based on the discussion in subsection S5.2, we expect that destructive interference will hinder excitation
transfer if we do not include path-dependent loss. We also know that for the fusion transition that there is
a contribution from the direct D2/4He transition (that has path-dependent loss due to fusion decay), and
also a contribution from the indirect D2/(3+1)/4He transition (that has path-dependent loss due to tunnel
decay). We would like to take into account both transitions in our analysis.

Excitation transfer scheme

To evaluate the indirect coupling matrix element between the initial state and final state, we need to take
into account all of the states, couplings, and loss processes. The scheme that results is illustrated in Figure
S54. We see that the fusion loss channels (denoted by red downward arrows) are only open for the 3+1
intermediate states near 0.4 MeV, and not for the 3+1 intermediate states at high energy above 20 MeV.
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Figure S54: Excitation transfer scheme for transfer from D2 donors to Pd receivers including direct and indirect transitions,
as well as loss. The levels involved are indicated in gray, transitions in blue, and loss in red. State energies are indicated relative
to the initial state.

Analysis based on lossy channel wave functions

In the discussion of the indirect coupling matrix element for the transfer from D2 donors to 4He receivers,
an approach was described in which fusion loss associated with the direct D2/4He transitions was taken
into account by making use of an imaginary potential in the calculation of the relative wave function, and
where tunnel decay in the 3+1 channel was taken into account through the use of boundary conditions
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corresponding to an outgoing wave at large separation.

This kind of approach leads to a version of the same scheme illustrated in Figure S55. For simplicity, we
consider the simple case of excitation transfer for a single D2 molecule and a single Pd nucleus both for the
figure and for the analysis that follows, which ignores the associated Dicke factors and makes things simpler.
It is straightforward to include the Dicke factors at the end for the more general case.
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Figure S55: Excitation transfer from the fusion transition to the Pd∗/Pd transition including direct and indirect transitions,
as well as loss. State numbering and matrix elements are indicated.

Contributing direct matrix elements

Using this approach the 𝑈 ′ matrix element for the direct D2/4He transition is evaluated with an imaginary
potential to take into account fusion loss, and the 𝑈 version is evaluated without an imaginary potential. In
the absence of Dicke factors this leads to

𝑈 = ⟨D2|a ⋅ 𝑐P|4He⟩, no loss

𝑈 ′ = ⟨D2|a ⋅ 𝑐P|4He⟩, with loss (356)

The momentum operator P creates and destroys oscillator quanta; however, our focus here is on the nuclear
part of the problem

Similarly, the 𝑉 ′ matrix element is evaluated using complex outgoing waves to take into account tunnel
decay of the 3+1 state, and the 𝑉 matrix element is evaluated with no tunnel decay. Once again, in the
absence of Dicke factors we can write

𝑉 = ⟨(3 + 1)|a ⋅ 𝑐P|4He⟩, no tunneling

𝑉 ′ = ⟨(3 + 1)|a ⋅ 𝑐P|4He⟩, with tunneling (357)
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Note that the reduction of destructive interference in this scheme comes from the difference between 𝑈 and
𝑈 ′, and from 𝑉 and 𝑉 ′. Because loss is present in some channels and not in others, terms that contribute
at lowest-order in perturbation theory do not cancel.

For the 𝑊 matrix element we can write

𝑊 = ⟨D2|𝑉𝑠𝑡𝑟𝑜𝑛𝑔 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏|(3 + 1)⟩ (358)

In a more sophisticated treatment we would develop different 𝑊 matrix elements based on wave functions
at the nuclear scale evaluated with loss or without loss. However, for simplicity here we will model 𝑊 to be
the same for all couplings in the model.

For the 𝑋 matrix element we can write

𝑋 = ⟨Pd|a ⋅ 𝑐P|Pd∗⟩ (359)

Near 23.85 MeV there are unstable Pd∗ excited states that can tunnel decay. We will not include this
possibility in the model under discussion.

Now that we have defined all the parameters, we’re in principle a position to calculate the different pathways
in Figure S55 and develop a sense of how much destructive interference is reduced by the fusion loss.

Estimating asymmetries between pathways

Inspecting Figure S55, we can readily identify a transfer path involving 𝑋 and 𝑉 on the top and 𝑋 and 𝑉 ′

on the bottom as well as a path involving 𝑋 and 𝑈 on the top and 𝑋 and 𝑈 ′ on the bottom. Since 𝑋 is not
affected by the 3+1 fusion loss, and therefore remains the same value on the top and the bottom, asymmetry
again results from 𝜂𝑈 = 𝑈 ′/𝑈 ≠ 1 and 𝜂𝑉 = 𝑉 ′/𝑉 ≠ 1.
The results for 𝜂𝑈 and 𝜂𝑉 from the last section S6.5 therefore still apply in this scenario. Specifically,

|1 − 𝜂𝑈 | = 0.013 (360)

and

|1 − 𝜂𝑉 | = 0.57 (361)

Discussion

The asymmetries in the different pathways are driven by the same ratios—namely 𝜂𝑈 and 𝜂𝑉 —as in case
where we have D2 donors to 4He receivers. We therefore continue to work with the same estimate |1 − 𝜂 =
0.1| as the correction factor representing the deviation from ideal loss (complete elimination of destructive
interference) - see section S5.5 and following sections with rate estimates.

Again, as in the previous section S6.5, a more detailed analysis involves the evaluation of the complete
indirect matrix element considering all pathways, in their relative contributions, from the initial to the final
states. How this is done is outlined in the following subsection and will be implemented in future work.

As in the previous section, a first attempt at this suggests that the estimated rates may in fact be higher
and that our initial estimate was a conservative one.

141



Outlook towards more detailed estimates

To develop more detailed estimates for excitation transfer rates we need to evaluate the indirect coupling
matrix between the initial state and final state. This involves taking into account all of the states, couplings,
and loss processes. There are some technical issues associated with this, since this system cannot be described
with two-level systems. The leading order contribution to the indirect coupling matrix element for this model
is

𝐻16 → (𝑈 ′ − 𝑈)𝑋
Δ𝑀𝑐2 − (𝑉 ′ − 𝑉 )𝑋

Δ𝑀𝑐2 ( 𝑊
𝛿𝑀𝑐2 )

= (𝜂𝑈 − 1)𝑈( 𝑋
Δ𝑀𝑐2 ) − (𝜂𝑉 − 1)𝑉 ( 𝑋

Δ𝑀𝑐2 )( 𝑊
𝛿𝑀𝑐2 )

(362)

The first term in Eq. 362 is due to a direct D2/4He transition - this is the only term considered in section
S5.5. The second term in in Eq. 362 the second term is due to an indirect D2/(3+1)/4He transition.

The energy differences are

Δ𝑀𝑐2 = 2𝑀𝑑𝑐2 − 𝑀4𝐻𝑒𝑐2 = 23.85 MeV

𝛿𝑀𝑐2 = 𝑀3+1𝑐2 − 2𝑀𝑑𝑐2 = 0.40 MeV (363)

We are familiar with Δ𝑀𝑐2 being the fusion transition energy. To estimate the smaller energy difference
𝛿𝑀𝑐2 we make use of the 4He∗ 3+1 𝑇 = 0 𝐽𝜋 = 1− state at 24.25 MeV listed in [107].

As to the remaining variables, estimates for 𝑈 and 𝑈 ′ as well as 𝑉 and 𝑉 ′ and 𝑊 given in the previous
section S6.5

We now plug the estimates into 𝐻16 and compare with the our initial approximation of (𝜂 − 1) 𝑈𝑋
Δ𝑀𝑐2 (with

𝜂 = 0.9). We find that the rates derived from our initial approximation are about 10 times smaller compared
to rates based on the full 𝐻16. This makes our initial estimate a conservative one.
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S6.7 Relativistic phonon-nuclear coupling

We can make use of a Lorentz transformation to boost the at-rest wave function of a nucleus in order to
develop a description in a relativistic moving frame (which would include contraction and spin rearrangement).
Nuclear motion in a lattice is not close to being relativistic; however, the same basic idea applies. We expect
the wave function of a nucleus that is vibrating to change depending on which direction it moves, and how
fast it moves. When we expand the internal nuclear wave function in terms of the rest frame states, we find
that an admixture of rest frame states develops, and it depends on the specifics of the velocity and direction.
This argument implies the existence of a relativistic coupling between vibrations and internal nuclear states
as a consequence of Lorentz invariance (see [130, 131, 112, 100], for more detailed versions of this argument).

Although nucleons are not Dirac particles, the Dirac equation is sometimes used to model them in order to
account for relativistic effects. It is possible to extract the interaction Hamiltonian from a many-particle
Dirac Hamiltonian directly. The lowest-order contribution to the interaction can be written in the form

�̂�𝑖𝑛𝑡 = a ⋅ 𝑐P (364)

where a can be written in terms of Dirac 𝜶 and 𝛽 matrices according to (see Eq. 9 in Hagelstein 2023 [100])

a = 1
𝑀𝑐 ∑

𝑗
𝛽𝑗�̂�𝑗 + 1

2𝑀𝑐2 ∑
𝑗<𝑘

[𝛽𝑗𝜶𝑗 + 𝛽𝑘𝜶𝑘, ̂𝑉𝑗𝑘] (365)

One can find discussions in the literature, where researchers were interested in the elimination of this kind
of interaction for uniform motion in free space (e.g., [132]); however, only recently has it been proposed that
this coupling might be important for coherent nuclear dynamics mediated by phonon exchange [133, 100].
As a result, most physicists are not familiar with this interaction and more research is needed to investigate
it systematically.

In connection with the effects under discussion in this document, we work with this interaction due to its
comparatively high strength compared to other lattice-nuclear interactions (see the discussion in section
S5.3).

Matrix element calculations for different transitions of interest here are given in sections S6.9 (D2/4He
transition), S6.10 (HD/3He transition) and S6.11 (Pd∗/Pd transition).
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S6.8 Selection rules

Selection rules play an important role in the discussion in this paper, which motivates us to consider selection
rules and how they come into the various problems that we are interested in.

Example: Selection rules associated with angular momentum

At the most basic level, a selection rule is connected to the issue of whether a transition matrix element is
finite or zero. The most straightforward illustration of this for us might be in the case of angular momen-
tum. Suppose that we are considering electric dipole transitions between electrons of atomic hydrogen in
a nonrelativistic approximation. In this case we might have two electronic states that we are interested in
with wave functions given by

𝜓𝑖 = 𝜓𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙,𝑚(𝜃, 𝜙)
𝜓𝑓 = 𝜓𝑛′𝑙′𝑚′ = 𝑅𝑛′𝑙′(𝑟)𝑌𝑙′,𝑚′(𝜃, 𝜙) (366)

If we consider the interaction with an electric field that is uniform over the atom, the interaction matrix
element of interest would be

⟨𝜓𝑓 | − d ⋅ E|𝜓𝑖⟩ = ⟨𝑅𝑛′𝑙′(𝑟)𝑌𝑙′,𝑚′(𝜃, 𝜙)|𝑒r ⋅ E|𝑅𝑛𝑙(𝑟)𝑌𝑙,𝑚(𝜃, 𝜙)⟩ (367)

For a transition to be driven by the electric field, the matrix element must be finite. Although simply stated,
this is not such an easy problem. Since the electronic wave functions are known in terms of radial and angular
pieces, it is most straightforward to express the dipole operator in terms of radial and spherical coordinates.
This leads to

r = ̂i𝑥𝑥 + ̂i𝑦𝑦 + ̂i𝑧𝑧

= ̂i𝑥√2𝜋
3 𝑟( − 𝑌1,1(𝜃, 𝜙) + 𝑌1,−1(𝜃, 𝜙)) + ̂i𝑦√2𝜋

3 𝑖𝑟(𝑌1,1(𝜃, 𝜙) + 𝑌1,−1(𝜃, 𝜙)) + ̂i𝑧√4𝜋
3 𝑟𝑌1,0(𝜃, 𝜙) (368)

We can use this to write the matrix element as

⟨𝜓𝑓 | − d ⋅ E|𝜓𝑖⟩ = 𝑒√4𝜋
3 ⟨𝑅𝑛′𝑙′ |𝑟|𝑅𝑛𝑙⟩(𝐸𝑥

⟨𝑌𝑙′,𝑚′ | − 𝑌1,1 + 𝑌1,−1|𝑌𝑙,𝑚⟩√
2

+𝑖𝐸𝑦
⟨𝑌𝑙′,𝑚′ |𝑌1,1 + 𝑌1,−1|𝑌𝑙,𝑚⟩√

2
+ 𝐸𝑧⟨𝑌𝑙′,𝑚′ |𝑌1,0|𝑌𝑙,𝑚⟩) (369)

Whether or not the transition matrix element is zero or not depends on the angular integral

⟨𝑌𝑙1,𝑚1
|𝑌𝑙2,𝑚2

|𝑌𝑙3,𝑚3
⟩ = (−1)𝑚1√(2𝑙1 + 1)(2𝑙2 + 1)(2𝑙3 + 1)

4𝜋 ( 𝑙1 𝑙2 𝑙3
0 0 0 ) ( 𝑙1 𝑙2 𝑙3

−𝑚1 𝑚2 𝑚3
) (370)

where the angular matrix element is expressed in terms of Wigner 3-j symbols.

Selection rules ultimately comes from the calculation of the transition matrix element. If we evaluate the
angular integral, we will get zero unless
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−𝑚1 + 𝑚2 + 𝑚3 = 0 (371)

which we conclude is a consequence of conservation of 𝑧-directed angular momentum. This is a selection
rule. When we evaluate the integral we will find that we also get zero unless

(−1)𝑙1+𝑙2+𝑙3 = 0 (372)

which we conclude is a consequence of conservation of parity. We will also get zero unless the triangle
selection rules

|𝑙1 − 𝑙2| ≤ 𝑙3 ≤ 𝑙1 + 𝑙2
|𝑙1 − 𝑙3| ≤ 𝑙2 ≤ 𝑙1 + 𝑙3
|𝑙2 − 𝑙3| ≤ 𝑙1 ≤ 𝑙2 + 𝑙3 (373)

which we conclude is a consequence of total angular momentum conservation.

A similar approach works in the case of magnetic transitions.

Selection rules for 4He in LS coupling

We might consider 4He to be in LS coupling in connection with radiative capture 𝑑(𝑑, 𝛾)𝛼 reaction as a first
approximation (the situation is more complicated than is described by pure LS coupling). In this kind of a
picture we would not expect radiative capture to occur through electric dipole (E1) interactions or magnetic
dipole (M1) interactions. An electric dipole interaction would couple the ground state 4He 1S configuration
to excited states (including continuum d+d channels) in 1P channels. But it is not possible to construct
wave functions that are fully anti-symmetric for 1P states with two deuterons. Similarly, a magnetic dipole
interaction would couple the ground state 1S to excited states (including continuum d+d channels) in 3S
channels. Once again, it is impossible to construct anti-symmetric wave functions for two deuterons in a 3S
state.

The conclusion from this argument is that electric and magnetic dipole transitions are forbidden in the
radiative capture 𝑑(𝑑, 𝛾)𝛼 reaction. There is no low-order coupling with d+d 𝐿 = 0 channels in LS coupling,
which would lead to an expectation that the astrophysical S-factor (a measure of the cross section) should
vanish at zero relative energy for these gamma capture reactions. However, we know from experiment [98]
that both electric and magnetic dipole interactions are observed in such experiments. A conclusion that can
be drawn is that simple LS coupling is insufficient to describe 𝑑(𝑑, 𝛾)𝛼 reactions. This is because the strong
force does not respect LS coupling.

Selection rules and tensor operators

Relativistic interactions and the nuclear potential both lead to a mixing between orbital angular momentum
L and spin S, so that neither orbital angular momentum nor spin are good quantum numbers. However,
total angular momentum J

J = L + S (374)

can be a good quantum number.

145



In light of this, we might expect to need to construct proper antisymmetric wave functions in LSJ coupling,
and then the selection rules would come from the brute force evaluation of the resulting matrix elements.
This situation would be discouraging if detailed calculations were needed for every problem that we wished
to consider. What we would like for this situation is a generalization of the dipole calculation above that
could work for more complicated LSJ wave functions.

This problem was considered early on by Wigner and others, with the conclusion that it is possible to develop
a suitable generalization. The idea focuses on the abstract notion of a tensor operator, which is an operator
that transforms like a tensor under a rotation

𝑇 (𝑘)
𝑞 = ∑

𝑞′
𝑇 (𝑘)

𝑞′ 𝐷(𝑘)
𝑞,𝑞′(𝛼, 𝛽, 𝛾) (375)

where 𝐷(𝑘)
𝑞,𝑞′(𝛼, 𝛽, 𝛾) is a rotation matrix and where 𝛼, 𝛽, 𝛾 here are Euler angles associated with a rotation

[134]. This is a requirement for operators in physical systems, as we would like the underlying physics not to
change if we work in a coordinate system that has been rotated. A test for whether an operator is a tensor
operator is if an the operator satisfies

[𝐽±, 𝑇 (𝑘)
𝑞 ] = ℏ√(𝑘 ∓ 𝑞)(𝑘 ± 𝑞 + 1)𝑇 (𝑘)

𝑞±1 (376)

where 𝐽± are raising and lowering operators for total angular momentum

𝐽+ = 𝐽𝑥 + 𝑖𝐽𝑦

𝐽− = 𝐽𝑥 − 𝑖𝐽𝑦 (377)

The spherical harmonic 𝑌𝑙,𝑚 functions are tensor operators 𝑇 (𝑙)
𝑚 in this sense.

Matrix elements of tensor operators satisfy the Wigner-Eckart theorem

⟨𝑗𝑚|𝑇 (𝑘)
𝑞 |𝑗′𝑚′⟩ = ⟨𝑗||𝑇 (𝑘)||𝑗′⟩⟨𝑗′𝑚′; 𝑘𝑞|𝑗𝑚⟩ (378)

where ⟨𝑗||𝑇 (𝑘)||𝑗′⟩ is a reduced matrix element, and where ⟨𝑗′𝑚′; 𝑘𝑞|𝑗𝑚⟩ is a Clebsch-Gordan coefficient. This
can be used to determine selection rules now for more complicated atomic and nuclear systems described by
LSJ coupling. If we make use of this formula to calculate matrix elements, we find that unless

−𝑚′ + 𝑞 + 𝑚 = 0 (379)

is satisfied, the matrix elements are zero. We interpret this in terms of conservation of total momentum in
the 𝑧-direction. Matrix elements vanish unless

(−1)𝜋+𝜋𝑞+𝜋′ = 1 (380)

where 𝜋 in this equation indicates parity. We can think of this as a statement that the spatial integrals will
be zero if the integrand is odd in one of the spatial dimensions. The matrix elements are zero unless the
triangle inequalities hold

|𝐽 − 𝑘| ≤ 𝐽 ′ ≤ 𝐽 + 𝑘
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|𝐽 − 𝐽 ′| ≤ 𝑘 ≤ 𝐽 + 𝐽 ′

|𝑘 − 𝐽 ′| ≤ 𝐽 ≤ 𝑘 + 𝐽 ′ (381)

This comes from the requirement that overall total angular momentum must be conserved for there to be a
transition.

Selection rules for 4He in LSJ coupling

As mentioned above, observations of gamma multipolarity in the 𝑑(𝑑, 𝛾)𝛼 are not consistent with selection
rules in LS coupling assuming a pure 1S 4He ground state. The strong force mixes different LS configurations
to produce a 𝐽𝜋 = 0+ ground state, and we can make use of electric dipole or magnetic dipole interactions
as tensor operators to understand the selection rules. The electric dipole operator d is a rank one tensor
operator with negative parity, and the magnetic dipole operator 𝝁 is a rank one tensor operator with positive
parity.

However, LS selection rules are easier to visualize. People often think of the 4He ground state as made up
of combinations of 1S, 3P and 5D states, all coupled to produce 𝐽 = 0 states. For gamma capture at low
energy, the contribution from the d+d 5S channel dominates due to electric quadrupole interactions coupling
to the 5D admixture of the 4He ground state, aided by the short wavelength of the 23.85 MeV gamma. At
higher energy there appears magnetic quadrupole (M2) coupling between the d+d 3P channel and the 1S
component of the ground state. Magnetic dipole coupling is possible from the d+d 3P 𝐽𝜋 = 1− channel to
the 3P admixture of the 4He ground state. Electric dipole interactions can provide coupling from p+t and
n+3He admixtures of the d+d 𝐽𝜋 = 1− channel to the ground state 𝐽𝜋 = 0+ [98].

Selection rules and the a ⋅ 𝑐P interaction

The a ⋅ 𝑐P operator is a rank one (𝑘 = 1) tensor operator with negative parity, and can be verified to satisfy
Equation (376) [112]. This means that we have good associated selection rules that we can take advantage
of. For transitions from the 4He ground state (which is a 𝐽𝜋 = 0+ state), this operator can couple to
𝐽𝜋 = 1− states. Since there is no dependence on nucleon charge, total isospin is preserved. This means that
transitions are possible only to states with 𝑇 = 0 𝐽𝜋 = 1−. These include the molecular D2

3P 𝐽𝜋 = 1−

states (which have 𝑇 = 0 since deuterons are isospin zero), and 4He∗ excited states also with 𝑇 = 0 and with
𝐽𝜋 = 1−, which include the 3+1 state at 24.25 MeV and the d+d state at 28.37 MeV (illustrated in Figure
S56).
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Figure S56: Allowed a ⋅ 𝑐P transitions from the 4He ground state to the 4He∗ excited levels with 𝐽𝜋 = 1− are indicated in
dark green.

148



S6.9 Estimating the a-matrix element for the D2/4He transition

This section provides a brief summary of the calculation of the a⋅𝑐P matrix element for the D2/4He transition
(see section S6.7 for context). The two-body relativistic phonon-nuclear interaction satisfies an identity that
allows matrix elements to be evaluated based on one-body operators according to (see Eq. 27 in Hagelstein
2023 [100]), which is reproduced here:

⟨Ψ1|�̂�𝑖𝑛𝑡|Ψ2⟩ → − 𝑖(𝐸2 − 𝐸1)
2𝑀𝑐2 ⟨Ψ1∣ ∑

𝑗
𝝈𝑗 × 𝝅𝑗

𝑚𝑐 ∣Ψ2⟩ ⋅ 𝑐P (382)

Here, Ψ1 and Ψ2 are the wave functions of the final and initial states, 𝐸2 is the energy eigenvalue associated
with state Ψ2, 𝐸1 is the energy eigenvalue associated with state Ψ1, 𝑀 is the total mass of the nucleus, 𝑚
is the nucleon mass, 𝝈𝑗 is a vector consisting of Pauli spin matrices for nucleon j, 𝝅𝑗 is relative momentum
of nucleon 𝑗, and P is the center of mass momentum for the nucleus, which in a lattice will be a phonon
operator.

For the D2 to 4He transition, we have:

Ψ1 = Ψ[4He]
Ψ2 = Ψ[D2]

(383)

Ψ[4He] = Φ𝑆𝒜{𝑝 ↑ 𝑝 ↓ 𝑛 ↑ 𝑛 ↓ } (384)

where Φ𝑆 is the spatial part of the singlet S ground state 4He wave function and

Ψ(𝐿, 𝑆; 𝐽, 𝑀𝐽) = ∑
𝑀𝐿

∑
𝑀𝑆

𝒜{Ψ(𝐿, 𝑀𝐿; 𝑆, 𝑀𝑆|12; 34)}⟨𝐿, 𝑀𝐿; 𝑆, 𝑀𝑆|𝐽 , 𝑀𝐽⟩ (385)

We used Mathematica for a brute force reduction of the spin and isospin components of the matrix element.
In the specific case of the 𝝈 × 𝝅 matrix element for the 𝐽 = 1, 𝑀𝐽 = 0 molecular state we obtain

⟨Ψ[4He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺√ 3
4𝜋 ∫ 𝑑3r ∫ 𝑑3r𝑎 ∫ 𝑑3r𝑏

{Φ𝑆𝜙𝑑(|r𝑎|)𝜙𝑑(|r𝑏|)[ − 𝑖 ̂i𝑧(𝑝𝑥𝑥 + 𝑝𝑦𝑦)]𝐹𝐷𝐷(|r|)}
(386)

where 𝐹𝐷𝐷 is defined for mathematical convenience via:

𝑅𝐷𝐷(𝑟) = 𝑒−𝐺√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝐹𝐷𝐷(𝑟)𝑟 (387)

We remind the reader that 𝑅𝐷𝐷 is the radial wave function that is often transformed into 𝑃𝐷𝐷 = 𝑟𝑅𝐷𝐷 as
in Eq. 272

We see that the spin and isospin reduction leads to matrix elements in which the 𝜎 × 𝝅 operator results in
spatial operators that depend on the relative separation of the two deuterons.
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Numerical calculation

After carrying out angular integrations, we end up with

⟨Ψ[4He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = − ̂i𝑧ℏ√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺√ 3
4𝜋 (2𝐼 + 2

3𝐾) (388)

where 𝐼 and 𝐾 are the multidimensional integrals

𝐼 = ∫ 𝑑3r ∫ 𝑑3r𝑎 ∫ 𝑑3r𝑏{Φ𝑆(r, r𝑎, r𝑏)𝜙𝑑(|r𝑎|)𝜙𝑑(|r𝑏|)𝐹𝐷𝐷(|r|)}

𝐾 = ∫ 𝑑3r ∫ 𝑑3r𝑎 ∫ 𝑑3r𝑏{Φ𝑆(r, r𝑎, r𝑏)𝜙𝑑(|r𝑎|)𝜙𝑑(|r𝑏|)𝑟𝐹 ′
𝐷𝐷(|r|)}

(389)

We have used Gaussian quadrature for the angular integrations and a second-order quadrature for the radial
integrations with the result (in fm−1)

𝐼 = − 72.857 𝐾 = 53.330 (390)

making use of the Gamow factor and the volume factor (see section S6.3)

𝐺 = 90.35 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.6498 × 10−12 (391)

Results

The result of the calculation for the a-matrix elements for transitions from the three 3P 𝐽𝜋 = 1− molecular
D2 states to the ground state 4He state are [112]

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = +1]⟩ = − (
̂i𝑥 + 𝑖 ̂i𝑦√

2
) 0.0362 √𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (392)

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = ̂i𝑧 0.0362 √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (393)

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = −1]⟩ = (
̂i𝑥 − 𝑖 ̂i𝑦√

2
) 0.0362 √𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (394)

We expect errors on the order of a factor of 2 due to the use of approximate model nuclear wave functions.
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Including loss

In the calculation of the a-matrix elements above, we made use of a radial D2 wave function calculated in
the absence of loss due to deuteron-deuteron fusion to the 3+1 channels (see section S6.5 for a discussion of
this kind of loss). This would be appropriate for an off-resonant process in which the basis energy is much
higher than the energy eigenvalue such that 3+1 fusion is energetically forbidden. The situation is different
on resonance where the 3+1 fusion process is allowed.

Consequently, we include an imaginary potential in the evaluation of the Schrödinger equation as discussed
below. We then evaluate again the integrals 𝐼 and 𝐾 using complex wave functions calculated with the
imaginary potential that is consistent with the known fusion rate from [107] for the d+d 𝐽𝜋 = 1− state at
28.37 MeV. The 𝐼 and 𝐾 integrals are

𝐼 = − 72.840 − 𝑖0.823 𝐾 = 53.322 + 𝑖0.290 (395)

The a-matrix elements that result are

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = +1]⟩ = − (
̂i𝑥 + 𝑖 ̂i𝑦√

2
) (0.0362 + 𝑖0.000477) √𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (396)

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = 0]⟩ = ̂i𝑧 (0.0362 + 𝑖0.000477) √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (397)

⟨Ψ[4He]|a|Ψ[𝐽 = 1, 𝑀𝐽 = −1]⟩ = (
̂i𝑥 − 𝑖 ̂i𝑦√

2
) (0.0362 + 𝑖0.000477) √𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (398)

The difference between these a-matrix elements and the matrix elements calculated in the absence of loss
leads to a difference in the contributions from the different pathways associated with destructive interference.
This can lead to a large acceleration of the excitation transfer rate.

Imaginary potential

Loss due to dd-fusion (via spontaneous tunnel decay as described in section S6.3) impacts the relative
deuteron-deuteron wave function, leading to observable effects in the elastic scattering channels as discussed
by Chwieroth et al. (1972) [135]. We can include this in the model here by adding an imaginary potential
to the Schrödinger equation (Eq. 272) according to

𝐸𝑃𝐷𝐷(𝑟) = ( − ℏ2

2𝜇
𝑑2

𝑑𝑟2 + ℏ2𝑙(𝑙 + 1)
2𝜇𝑟2 + 𝑉𝑚𝑜𝑙(𝑟) + 𝑉 𝑆,𝑙

𝑛𝑢𝑐(𝑟) + 𝑖𝑊(𝑟))𝑃𝐷𝐷(𝑟) (399)

where the imaginary potential is of the form

𝑊(𝑟) = − 𝑊0( 1
1 + 𝑒(𝑟−𝑅0)/𝑎 + 4𝑒(𝑟−𝑅0)/𝑎

(1 + 𝑒(𝑟−𝑅0)/𝑎)2 ) (400)

In the literature the parameters of the imaginary potential are obtained by fitting to scattering data. Un-
fortunately, this is problematic at very low relative energy, in the eV range. We used 𝑅0 and 𝑎 values from
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Kurihara (1985) [136], and selected 𝑊0 so that it would lead to a decay rate consistent with [107]. The
model parameters are given by

𝑊0 = 0.066 MeV
𝑅0 = 3.75 fm

𝑎 = 0.5 fm
(401)

The imaginary potential is illustrated in Figure S57.
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Figure S57: Imaginary potential 𝑊(𝑟) in the 3𝑃 D2 channel due to 3+1 fusion decay.
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S6.10 Estimating a-matrix elements for the HD/3He transitions

This section provides a brief summary of the calculation of the a ⋅ 𝑐P matrix elements for the HD/3He
transitions. The model is similar to the one described above for the D2/4He transition.

Ground state wave function

In a complete description of the 3He ground state we would make use of ten group theoretical basis states
[137]; however, for the calculation in this subsection we will make use of a simpler approximate single
configuration wave function. The overall single configuration wave function for the 1S configuration must be
fully anti-symmetric, and one way to construct it is to make use of an anti-symmetrizer according to

Ψ[3He 2𝑆, 𝑀𝑆 = 1/2] = 𝒜{(𝑝 ↓)1(𝑝 ↑)2(𝑛 ↑)3Φ𝑆(r1, r2, r3)} (402)

where 𝒜 is an anti-symmetrization operator; where Φ𝑆(r1, r2, r3) is the (totally symmetric) spatial wave
function; and where (𝑝 ↓)1(𝑝 ↑)2(𝑛 ↑)3 is the spin and isospin wave function for the 1S state prior to
anti-symmetrization. We can expand this out and write

Ψ[3He 2𝑆, 𝑀𝑆 = 1/2] =
1√
6( − 𝑝 ↑ 𝑝 ↓ 𝑛 ↑ +𝑝 ↓ 𝑝 ↑ 𝑛 ↑ +𝑝 ↑ 𝑛 ↑ 𝑝 ↓ −𝑝 ↓ 𝑛 ↑ 𝑝 ↑ −𝑛 ↑ 𝑝 ↑ 𝑝 ↓ +𝑛 ↑ 𝑝 ↓ 𝑝 ↑ )Φ𝑆(r1, r2, r3) (403)

where for simplicity we use a short cut in notation according to

𝑝 ↑ 𝑝 ↓ 𝑛 ↑ = (𝑝 ↑)1(𝑝 ↓)2(𝑛 ↑)3 (404)

For the symmetric spatial wave function we use

Φ𝑆(r1, r2, r3) = 𝑁𝑆𝑢(|r2 − r1|)𝑢(|r3 − r1|)𝑢(|r3 − r2|) (405)

where 𝑁𝑆 is a normalization constant. The function 𝑢 is

𝑢(𝑟) = (𝑟 − 𝑟0)𝑒−𝛼𝑟 (406)

with

𝛼 = 0.831 fm−1 𝑟0 = 0.485 fm (407)

which results in

√⟨|r|2⟩ = 1.687 fm (408)
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Molecular state wave functions

For the molecular HD wave functions we use a similar approach. For simplicity we use a single-configuration
3S wave function for the deuteron. The overall wave function must be anti-symmetric, so we make use of
an anti-symmetrization operator as above. Since the a ⋅ 𝑐P interaction preserves isospin, we can focus on
molecular states with isospin 𝑇 = 1/2 (and not be concerned with the 𝑇 = 3/2 states). HD molecules can
have total spin 𝑆 = 1/2 and 𝑆 = 3/2. Since the a ⋅ 𝑐P is a rank 1 tensor operator, we know that only
the molecular 2𝑃 and 4P states will given finite matrix elements. It is simplest to specify the states in LS
coupling. For the different cases we can write

Ψ[HD 4𝑃 , 𝑀𝑆 = 3/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3(↑↑)12 ↑3 𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (409)

Prior to anti-symmetrization, the deuteron involves nucleons 1 and 2, and the proton is nucleon 3. The
deuteron is in an isospin 0 state, leading to an overall isospin 𝑇 = 1/2 state as required. All of the spins
are up as appropriate for a 𝑆 = 3/2, 𝑀𝑆 = 3/2 state. The relative molecular separation is denoted as r12;3,
indicating that the deuteron involves nucleons 1,2 and the proton involves nucleon 3. The spherical harmonic
𝑌𝐿,𝑀 has one unit of angular momentum 𝐿 = 1 as appropriate for a molecular P state.

For the other 4P states we can write

Ψ[HD 4𝑃 , 𝑀𝑆 = 1/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3
1√
3( ↑↑↓ + ↑↓↑ + ↓↑↑ )𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (410)

Ψ[HD 4𝑃 , 𝑀𝑆 = −1/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3
1√
3( ↑↓↓ + ↓↑↓ + ↓↓↑ )𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (411)

Ψ[HD 4𝑃 , 𝑀𝑆 = −3/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3(↓↓)12 ↓3 𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (412)

For the 2P states we have

Ψ[HD 2𝑃 , 𝑀𝑆 = 1/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3
1√
6(2 ↑↑↓ − ↑↓↑ − ↓↑↑ )𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (413)

Ψ[HD 2𝑃 , 𝑀𝑆 = −1/2, 𝑀] = 𝒜{(𝑝𝑛 − 𝑛𝑝√
2

)
12

𝑝3
1√
6( ↑↓↓ + ↓↑↓ −2 ↓↓↑ )𝜙𝑑(|r21|)𝑅𝐻𝐷(|r12;3|)𝑌1,𝑀(Ω12;3)} (414)

For the deuteron relative wave function for this matrix element calculation we used the following expression
from [122]

𝜙𝑑(𝑟) =
⎧{
⎨{⎩

0 for 𝑟 < 𝑟0

𝑁𝑑
tanh[𝛾(𝑟 − 𝑟0)] e−𝛽𝑟

𝑟 for 𝑟0 < 𝑟
(415)

which was fit to the 3S component of the deuteron wave function based on the old Hamada-Johnston potential
model.
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Construction of LSJ wave functions

As a rank 1 tensor operator, the a ⋅ 𝑐P operator satisfies the Wigner-Eckart theorem

⟨𝐽 ′𝑀 ′|𝑇 (𝑘)
𝑞 |𝐽𝑀⟩ = ⟨𝐽 ′𝑀 ′; 𝑘𝑞|𝐽𝑀⟩⟨𝐽 ′||𝑇 (𝑘)||𝑀⟩ (416)

with 𝑘 = 1. This provides motivation to work with states in LSJ coupling, which we can construct according
to

|𝐿𝑆𝐽, 𝑀𝐽⟩ = ∑
𝑀,𝑀𝑆

|𝐿, 𝑀⟩|𝑆, 𝑀𝑆⟩⟨𝐿, 𝑀; 𝑆, 𝑀𝑆|𝐽 , 𝑀𝐽⟩ (417)

where the ⟨𝐿, 𝑀; 𝑆, 𝑀𝑆|𝐽 , 𝑀𝐽⟩ are Clebsch-Gordan coefficients. It will be useful to use LSJ states for the
molecular HD states, since the associated selection is clean with these states (the interaction matrix elements
are more complicated with LS-coupled states).

Molecular coordinates

It is convenient to define a set of coordinates that are specific to the HD molecule. These include the center
of mass position R, deuteron relative position r𝑎, and HD molecular relative position r. These coordinates
can be related to the individual nucleon coordinates in the 12;3 permutation according to

R = r1 + r2 + r3
3

r𝑎 = r2 − r1

r = r3 − r1 + r2
2

(418)

In matrix form this is

⎛⎜
⎝

R
r𝑎
r

⎞⎟
⎠

= M ⎛⎜
⎝

r1
r2
r3

⎞⎟
⎠

= ⎛⎜
⎝

1
3

1
3

1
3

−1 1 0
− 1

2 − 1
2 1

⎞⎟
⎠

⎛⎜
⎝

r1
r2
r3

⎞⎟
⎠

(419)

We can invert this and write

⎛⎜
⎝

r1
r2
r3

⎞⎟
⎠

= M−1 ⎛⎜
⎝

R
r𝑎
r

⎞⎟
⎠

= ⎛⎜
⎝

1 − 1
2 − 1

3
1 1

2 − 1
3

1 0 2
3

⎞⎟
⎠

⎛⎜
⎝

R
r𝑎
r

⎞⎟
⎠

(420)

or

r1 = R − 1
2r𝑎 − 1

3r

r2 = R + 1
2r𝑎 − 1

3r

r3 = R + 2
3r

(421)
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From these relations we can develop relations between the nucleon momenta and momenta associated with
the molecular coordinates in the 12;3 permutation

⎛⎜
⎝

P
p𝑎
p

⎞⎟
⎠

= (M𝑇 )−1 ⎛⎜
⎝

p1
p2
p3

⎞⎟
⎠

= ⎛⎜
⎝

1 1 1
− 1

2
1
2 0

− 1
3 − 1

3
2
3

⎞⎟
⎠

⎛⎜
⎝

p1
p2
p3

⎞⎟
⎠

(422)

and

⎛⎜
⎝

p1
p2
p3

⎞⎟
⎠

= M𝑇 ⎛⎜
⎝

P
p𝑎
p

⎞⎟
⎠

= ⎛⎜
⎝

1
3 −1 − 1

21
3 1 − 1

21
3 0 1

⎞⎟
⎠

⎛⎜
⎝

P
p𝑎
p

⎞⎟
⎠

(423)

Integrations

For the integrations we have

∫ 𝑑3r1 ∫ 𝑑3r2 ∫ 𝑑3r3{⋯} = ∫ 𝑑3R ∫ 𝑑3r𝑎 ∫ 𝑑3r|det{M}−1|{⋯}

= ∫ 𝑑3R ∫ 𝑑3r𝑎 ∫ 𝑑3r{⋯}
(424)

since

|det{M}−1| = 1 (425)

The 3He normalization integral

We can make use of the molecular coordinate and integration formula to develop a normalization integral
for the ground state wave function. We can write

⟨Ψ[3He]|Ψ[3He]⟩ = ∫ 𝑑3r𝑎 ∫ 𝑑3r{|Φ𝑆|2} (426)

where the spin and isospin components contribute a factor of unity. We can write the spatial wave function
as

Φ𝑆(r1, r2, r3) = 𝑁𝑆𝑢(|r2 − r1|)𝑢(|r3 − r1|)𝑢(|r3 − r2|) (427)

For the inter-particle separations we have
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|r21|2 = |r𝑎|2

|r31|2 = ∣r + r𝑎
2 ∣

2
= |r|2 + 1

4|r𝑎|2 + 2r ⋅ r𝑎

|r32|2 = ∣r − r𝑎
2 ∣

2
= |r|2 + 1

4|r𝑎|2 − 2r ⋅ r𝑎

(428)

For the normalization integral we have

⟨Ψ[3He]|Ψ[3He]⟩ = ∫ 𝑑3r𝑎 ∫ 𝑑3r{𝑁2
𝑆𝑢2(𝑟𝑎)𝑢2(√|r|2 + 1

4|r𝑎|2 + 2r ⋅ r𝑎)𝑢2(√|r|2 + 1
4|r𝑎|2 − 2r ⋅ r𝑎)}

(429)

We can expand this out according to

⟨Ψ[3He]|Ψ[3He]⟩ = 𝑁2
𝑆 ∫

∞

0
𝑟2

𝑎𝑑𝑟𝑎 ∫
𝜋

0
sin 𝜃𝑎𝑑𝜃𝑎 ∫

2𝜋

0
𝑑𝜙𝑎 ∫

∞

0
𝑟2𝑑𝑟 ∫

𝜋

0
sin 𝜃𝑑𝜃 ∫

2𝜋

0
𝑑𝜙

{𝑢2(𝑟𝑎)𝑢2(√𝑟2 + 1
4𝑟2𝑎 + 2𝑟𝑟𝑎 cos 𝜃𝑎)𝑢2(√𝑟2 + 1

4𝑟2𝑎 − 2𝑟𝑟𝑎 cos 𝜃𝑎)}

= 𝑁2
𝑆8𝜋2 ∫

∞

0
𝑟2

𝑎𝑑𝑟𝑎 ∫
𝜋

0
sin 𝜃𝑎𝑑𝜃𝑎 ∫

∞

0
𝑟2𝑑𝑟

{𝑢2(𝑟𝑎)𝑢2(√𝑟2 + 1
4𝑟2𝑎 + 2𝑟𝑟𝑎 cos 𝜃𝑎)𝑢2(√𝑟2 + 1

4𝑟2𝑎 − 2𝑟𝑟𝑎 cos 𝜃𝑎)}

= 1

(430)

Reduction of the matrix elements

We recall that the a-matrix element can be expressed in terms of 𝝈 × 𝝅 operators according to

⟨Φ2|a ⋅ 𝑐P|Φ1⟩ = 𝑖(𝐸2 − 𝐸1)
2 ⟨Φ2∣ ∑

𝑗
𝝈𝑗 × 𝝅𝑗

𝑚𝑐 ∣Φ1⟩ ⋅ P
𝑀𝑐 (431)

where 𝑀 is the total mass; where P is the center of mass momentum; where 𝝅𝑗 is the relative momentum of
nucleon 𝑗; where 𝝈𝑗 is the Pauli spin matrix for nucleon 𝑗; and where 𝐸1 and 𝐸2 are the energy eigenvalues
for Φ1 and Φ2. We used Mathematica to evaluate the spin and isospin terms resulting in a reduction of the
𝝈 × 𝝅 matrix elements into spatial integrals. The results are summarized according to:

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧ℏ√ 3

2𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (432)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = −1
2]⟩ = ( ̂i𝑥 − 𝑖 ̂i𝑦)ℏ√ 3

2𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (433)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = 1
2]⟩ = − ̂i𝑧ℏ√ 3

4𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (434)
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⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = −1
2]⟩ = − ( ̂i𝑥 − 𝑖 ̂i𝑦)ℏ√ 3

4𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (435)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 3
2]⟩ = − ( ̂i𝑥 + 𝑖 ̂i𝑦)ℏ√ 9

16𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (436)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧ℏ√ 3

4𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (437)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = −1
2]⟩ = ( ̂i𝑥 − 𝑖 ̂i𝑦)ℏ√ 3

16𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (438)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 3
2]⟩ = − ( ̂i𝑥 + 𝑖 ̂i𝑦)ℏ√ 45

16𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (439)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧ℏ√ 15

16𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (440)

⟨Ψ[3He]∣ ∑
𝑗

𝝈𝑗 × 𝝅𝑗∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = −1
2]⟩ = ( ̂i𝑥 − 𝑖 ̂i𝑦)ℏ√ 15

16𝜋 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺(𝐼 + 1
3𝐾) (441)

where the spatial integrals are

𝐼 = ∫ ∫ Φ𝑆𝜙𝑑(𝑟𝑎)𝐹𝐻𝐷(𝑟)𝑑3r𝑎𝑑3r (442)

𝐾 = ∫ 𝑑3r ∫ 𝑑3r𝑎{Φ𝑆(r, r𝑎)𝜙𝑑(|r𝑎|)𝑟𝐹 ′
𝐻𝐷(|r|)} (443)

In these formulas we defined 𝐹𝐻𝐷 for mathematical convenience via:

𝑅𝐻𝐷(𝑟) = √𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺𝑟𝐹𝐻𝐷(𝑟) (444)

Numerical evaluation of the spatial integrals

We have evaluated the spatial integrals and we obtained

𝐼 = 77.774
𝐽 = − 16.324 (445)

Values for the a-matrix elements

The a-matrix elements that result are

⟨Ψ[3He]∣a∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧 0.00931𝑖 √ 𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (446)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = −1
2]⟩ =

̂i𝑥 − 𝑖 ̂i𝑦√
2

0.0132𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (447)
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⟨Ψ[3He]∣a∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = 1
2]⟩ = − ̂i𝑧 0.00659𝑖 √ 𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (448)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 1

2 , 𝑀𝐽 = −1
2]⟩ = −

̂i𝑥 − 𝑖 ̂i𝑦√
2

0.00931𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (449)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 3
2]⟩ = −

̂i𝑥 + 𝑖 ̂i𝑦√
2

0.00807𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (450)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧 0.00659𝑖 √ 𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (451)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 1
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = −1
2]⟩ =

̂i𝑥 − 𝑖 ̂i𝑦√
2

0.00466𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (452)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 3
2]⟩ = −

̂i𝑥 + 𝑖 ̂i𝑦√
2

0.0180𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (453)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = 1
2]⟩ = ̂i𝑧 0.00736𝑖 √ 𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (454)

⟨Ψ[3He]∣a∣Ψ[𝑆 = 3
2 ∶ 𝐽 = 3

2 , 𝑀𝐽 = −1
2]⟩ =

̂i𝑥 − 𝑖 ̂i𝑦√
2

0.0104𝑖 √ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (455)

For these calculations we used

√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 2.33 × 10−6

𝐺 = 75.69
(456)

Modeling loss on the matrix element

Elsewhere we have commented on the fact that the a-matrix element for the D2/4He transition has one value
if fusion loss is included, and another value if fusion loss is not included. We would expect the situation to be
qualitative similar for the HD/3He matrix element since there are loss mechanisms that would be expected
to impact the a-matrix element. The main loss mechanisms include electric dipole (E1) radiative decay and
internal conversion.

In the case of radiative decay, it would be possible to develop an imaginary potential by making use of

−𝑖ℏ𝛾𝑟𝑎𝑑
2 = − 𝑖ℏ

2
4
3

1
4𝜋𝜖0

𝜔3

ℏ𝑐3 |⟨HD|d|3He⟩|2 = 𝑖⟨HD|𝑊(𝑟)|HD⟩ (457)

where 𝛾𝑟𝑎𝑑 is the radiative decay rate; where ℏ𝜔 is the gamma energy; where d is the electric dipole operator

d = ∑
𝑗

𝑞𝑗r𝑗 (458)

where 𝑞𝑗 is the nucleon effective charge and r𝑗 is the (relative) position of nucleon 𝑗. 𝑊(𝑟) is the imaginary
potential (operator) that can be used to model loss. It follows that the imaginary potential operator can be
written as

𝑊(𝑟) = − 2
3

1
4𝜋𝜖0

𝜔3

𝑐3 d|3He⟩⟨3He|d (459)
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We have not yet set up such a calculation.

Rough estimate for the impact of loss on the a-matrix element

We expect that the impact of loss on the a-matrix element will be proportional to the relevant decay rate.
Based on this, we could get a rough estimate for the difference based on the ratio of the radiative decay
rate for the HD/3He transition (where we do not have a calculation) and the fusion loss rate for the D2/4He
transition (where we do have an estimate). We would expect

|1 − 𝜂|(HD/3He) = ∣1 − 𝜂(HD/3He)∣ ∼ ( 𝛾𝑟𝑎𝑑
𝛾𝑓𝑢𝑠𝑖𝑜𝑛

)
𝑙𝑜𝑐𝑎𝑙

|1 − 𝜂|(D2/4He) (460)

where the relevant radiative and fusion rates are for nuclei localized on the fm scale; where |1 − 𝜂| is the
ratio of the excitation rate including loss effects relative to the ideal; where 𝜂 is the (mostly) phase factor
associated with loss in a-matrix element.

We have the estimate from Tilley et al. (1992) [107] for the fusion rate

ℏ𝛾𝑓𝑢𝑠𝑖𝑜𝑛 = 0.15 MeV (461)

For the radiative decay rate we can make use of the Weisskopf estimate for an E1 transition

𝛾𝑟𝑎𝑑 ∼ 1.0 × 1014𝐴2/3(ℏ𝜔)3 → 3.4 × 1016 (462)

or

ℏ𝛾𝑟𝑎𝑑 ∼ 23 eV (463)

This leads to the rough estimate

|1 − 𝜂|(HD/3He) ∼ ( 23 eV
0.15 MeV) 0.013 = 2 × 10−6 (464)

Discussion

It has long been argued that, because of the lower reduced mass and the smaller Gamow factor, HD/3He
fusion should be dominant in LENR processes. We can now make a quantitative version of this argument
by comparing the ratio of the a-matrix elements (from this section and from section S6.9):

|⟨4He|𝑎𝑧|D2
3𝑃 , 𝐽 = 0, 𝑀𝐽 = 0⟩|

|⟨3He𝐽 = 1/2, 𝑀𝐽 = 1/2|𝑎𝑧|HD 3𝑃 , 𝐽 = 1/2, 𝑀𝐽 = 1/2⟩| =
0.0362(√ 𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

D2

0.00931(√ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)
𝐻𝐷

(465)

We can evaluate this ratio assuming 𝑈𝑒 = 350 eV, with 𝐺𝐻𝐷 = 35.87 and 𝐺D2
= 41.21
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|⟨4He|𝑎𝑧|D2
3𝑃 , 𝐽 = 0, 𝑀𝐽 = 0⟩|

|⟨3He𝐽 = 1/2, 𝑀𝐽 = 1/2|𝑎𝑧|HD 3𝑃 , 𝐽 = 1/2, 𝑀𝐽 = 1/2⟩| = 0.0053 (466)

However, what is more important for excitation transfer is this ratio weighted by the appropriate |1 − 𝜂|
values that represent selective loss and the suppression of destructive interference (see sections S6.5 and
S6.6).

|1 − 𝜂|(D2/4He)|⟨4He|𝑎𝑧|D2
3𝑃 , 𝐽 = 0, 𝑀𝐽 = 0⟩|

|1 − 𝜂|(HD/3He)|⟨3He𝐽 = 1/2, 𝑀𝐽 = 1/2|𝑎𝑧|HD 3𝑃 , 𝐽 = 1/2, 𝑀𝐽 = 1/2⟩| ∼

0.1 × 0.0362(√ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)
D2

2 × 10−6 × 0.00931(√ 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)
𝐻𝐷

= 270
(467)

where we have used our rough estimate for the D2/3+1/4He contribution to the D2/4He transition for |1−𝜂|.
This suggests that even though tunneling is more difficult for the D2/4He transition, the faster loss likely
results in a faster excitation transfer rate to receiver nuclei than for the HD/3He transition.
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S6.11 Estimating a-matrix elements for Pd∗/Pd transitions

Excitation transfer from the D2/4He fusion transition to Pd∗/Pd transitions provides the foundation for
nuclear effects in the PdD𝑥 system within the models under discussion in this document. In order to
develop quantitative model predictions we need estimates for the excited state energy levels, for the lifetimes,
multipolarities, and, if allowed by the selection rules, estimates for the a-matrix elements. At present, in
general we lack much relevant data for the models (see the discussions in section S5.4 and section S5.16). It
is nevertheless possible to develop a rough estimate for the magnitude of the a-matrix elements of Pd∗/Pd
transitions, as discussed in this section.

M2 transitions from the ground state

Our focus in the models is on magnetic quadrupole (M2) transitions from the ground state, since the a ⋅ 𝑐P
interaction has M2 multipolarity (see section S6.7), and since transitions from the ground state can develop
cooperative enhancement (Dicke) factors. From the NuDat database there is only one such transition among
the stable Pd isotopes listed, which is close to satisfying these requirements; this is an E1+M2 transition in
105Pd to a state at 644.7 keV with a lifetime listed as 126 ps. A gamma transition with M2 multipolarity
can be relatively slow (since radiation with magnetic quadrupole multipolarity is a weak effect); however,
an admixture with electric dipole (E1) multipolarity results in a much faster contribution to the radiative
decay rate. That being said, we do not expect this to be the only M2 transition from the ground state in
the Pd isotopes.

We can broaden our search by looking for levels with 𝐽𝜋 quantum numbers that are consistent with a
transition from the ground state with M2 multipolarity. This is easiest among the even 𝐴 stable Pd isotopes,
since we only need to concern ourselves with excited states with 𝐽𝜋 = 1−. These are listed in Table 9

Table 9: List of 𝐽𝜋 = 1− excited states in the even mass stable Pd isotopes.

Isotope 𝐸 (keV) 𝐽𝜋 𝑇1/2

Pd-106 2484.66 (-1) NA
Pd-106 2898.1 (-1,-4) NA
Pd-106 2908.7 (-1) NA
Pd-110 2125.3 (-1) NA

The (−1) notation in this table is taken from the NuDat database, which indicates uncertainty in the 𝐽𝜋

assignment. The lack of entries for the half-life reflects the fact that the states, which are potential candidates
for us, are not well known. In 105Pd, there are states at 644.7 keV, 1088.2 keV, 1650.6 keV, and 2101.5 keV
which are candidates, where the state at 644.7 keV was mentioned above.

Prospects for modeling

It is possible to develop models from which a-matrix elements can be calculated. One such model is the inter-
acting boson model, which has been applied to even-mass Pd nuclei (Scholten, 1980 [138]). A generalization
of this model was used to model states and transitions in 105Pd (Meyer et al., 1996 [139]).

We expect that in the future large-scale shell model calculations can be done for the stable Pd isotopes (and
other relevant nuclides), and used to develop approximate level energies, lifetimes and a-matrix elements.
An example of large scale shell model calculations in a relevant mass region can be found in Sieja 2018 [140].
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Rough estimate for the a-matrix elements for allowed transitions

We recall from section S6.7 that a matrix element of the relativistic phonon nuclear interaction can be written
as

⟨Φ1|�̂�𝑖𝑛𝑡|Φ2⟩ → − 𝑖(𝐸2 − 𝐸1)
2𝑀𝑐2 ⟨Φ1∣ ∑

𝑗
𝝈𝑗 × 𝝅𝑗

𝑚𝑐 ∣Φ2⟩ ⋅ 𝑐P = ⟨Φ1|a|Φ2⟩ ⋅ 𝑐P (468)

We can develop a rough estimate for the a-matrix element in the case of an allowed transition at 23.85 MeV
in a stable Pd isotope, in which a single nucleon makes a transition based on

|⟨Φ𝑃𝑑∗|a ⋅ ̂i𝑧|Φ𝑃𝑑⟩| ∼ 1
2

23.85 MeV
106.41 × 931.5 MeV

ℏ (1 fm−1)
𝑚𝑐

= 2.6 × 10−5
(469)

where the inverse reduced nucleon Compton wavelength is

𝑚𝑐
ℏ = 𝑚𝑐2

ℏ𝑐 = 938 MeV
197.326 MeV fm = 4.76 fm−1 (470)

For this rough parametrization, the corresponding nucleon kinetic energy is approximately

𝑝2

2𝑚 ∼ ℏ2(1 fm−1)2

2𝑚 = 20.7 MeV (471)

This is roughly the kinetic energy of a nucleon at the Fermi level.

Normalized transition strength

We would expect very few nuclear M2 transitions to be fully allowed corresponding to the model above.
Instead, we expect the strong mixing between different nuclear configurations to lead to admixtures of
states with some M2 strength, corresponding to a fractionation of transition strength of a fully allowed M2
transition over a great many individual states (especially at lower energy). To take this into account we
scale the a-matrix element by the square root of the normalized transition strength according to

|⟨Φ𝑃𝑑∗|a ⋅ ̂i𝑧|Φ𝑃𝑑⟩| ∼ 1
2𝑂 23.85 MeV

106.41 × 931.5 MeV
ℏ (1fm−1)

𝑚𝑐
= 2.6 × 10−5 𝑂 (472)

where 𝑂2 is the normalized M2 transition strength. Unfortunately, we currently do not yet have reliable
estimates for M2 𝑂-values for precise a-matrix element determination. If we had estimates for the gamma
decay rate for a pure M2 transition, we could develop an estimate for the normalized M2 transition strength
according to

𝛾 ≈ 𝑂2𝛾(𝑀2)
𝑊𝑒𝑖𝑠𝑠𝑘𝑜𝑝𝑓 (473)

where the Weisskopf estimate for an M2 transition assumes a single nucleon transition that is fully allowed.
Note that the M2 transition matrix element for the a operator is not the same as the M2 transition matrix
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element for radiative decay, so in a more precise model, we would keep track of 𝑂-values separately for the
two different types of transitions. However, given the current lack of reliable estimates for either, making
use of a general normalized M2 transition strength that we will use interchangeably for both will allow us
to develop intuition about how we can expect a-matrix elements to work, given that we already have some
intuition about how transition strengths work for the more familiar case of radiative decay.

Transitions for nuclear molecule cluster states

The nuclear physics community has put much effort into the determination of the energy levels, 𝐽𝜋 quantum
numbers, lifetimes, and gamma transition rates of numerous nuclear excited states over many decades. As
a result, we can develop estimates in some cases of the associated transition strength based on experiment
and theory. The situation in the case of the proposed highly-excited nuclear molecule cluster states of the
stable Pd isotopes is different, since there is no widely developed literature.

We do have some intuition about how such states likely behave. A major issue is satisfying selection rules for a
transition from the ground state to these states. Were we to insist on non-rotational binary nuclear molecule
cluster states, then we immediately restrict the fraction of potentially allowable transitions. If we start from
an even-even Pd ground state, then we have 𝐽𝜋 = 0+ in all cases. There would be no M2 transitions from
these ground states to non-rotational nuclear molecule cluster states made up of 0+ daughters, since these
states would be 0+ overall. This eliminates the majority of nuclear molecule cluster states as candidates
for a ⋅ 𝑐P coupling with the ground states. Transitions to such states are also forbidden if we were to add
binary nuclear molecule cluster states with one unit of rotational angular momentum (since a change of spin
is required in addition to a change in angular momentum).

We also expect a hindrance factor associated with the splitting up for the initial parent nucleus into daughter
clusters. This hindrance is expected to be minimized in the case of an alpha particle as a daughter, since
there is evidence in the literature that nucleons in nuclei spend some of their time as alpha particles. We
would expect the hindrance factor to be maximized in the case of nearly symmetric daughters, largely since
the parent nuclei wouldn’t be expected to have much admixture from such disparate configurations. Until
such time as these states are modeled in detail (or addressed experimentally), we will not be able to have
reliable estimates for the associated a-matrix elements from the grounds states. What we are able to do in
the meantime is to make use of conceptual arguments that transitions to such states are weak, or extremely
weak and estimates for specific 𝑂-values will be educated guesses.
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S6.12 Deriving minimum and maximum Dicke enhancement factors

In section S5.2 above, Eq. 54 was given as the Hamiltonian for the degenerate pseudo-spin version of the
nuclear Dicke model, which is recalled to be

�̂� → 1
2ℏΩ𝑎𝑏(𝑆(𝑏)

−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ ) (474)

This Hamiltonian describes excitation transfer between two transitions.

Transition matrix element

We can evaluate the transition matrix element directly

⟨𝑆𝑎, 𝑀𝑎∣⟨𝑆𝑏, 𝑀𝑏∣ 12ℏΩ𝑎𝑏(𝑆(𝑏)
−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ )∣𝑆𝑎, 𝑀𝑎 − 1⟩∣𝑆𝑏, 𝑀𝑏 + 1⟩

= 1
2ℏΩ𝑎𝑏⟨𝑆𝑎, 𝑀𝑎∣⟨𝑆𝑏, 𝑀𝑏∣𝑆

(𝑏)
−
ℏ

𝑆(𝑎)
+
ℏ ∣𝑆𝑎, 𝑀𝑎 − 1⟩∣𝑆𝑏, 𝑀𝑏 + 1⟩

= 1
2ℏΩ𝑎𝑏⟨𝑆𝑎, 𝑀𝑎∣𝑆

(𝑎)
+
ℏ ∣𝑆𝑎, 𝑀𝑎 − 1⟩⟨𝑆𝑏, 𝑀𝑏∣𝑆

(𝑏)
−
ℏ ∣𝑆𝑏, 𝑀𝑏 + 1⟩

(475)

We recall that

𝑆±
ℏ |𝑆, 𝑀𝑆⟩ = √𝑆(𝑆 + 1) − 𝑀𝑆(𝑀𝑆 ± 1)|𝑆, 𝑀𝑆 ± 1⟩ (476)

which leads to

⟨𝑆𝑎, 𝑀𝑎∣⟨𝑆𝑏, 𝑀𝑏∣ 12ℏΩ𝑎𝑏(𝑆(𝑏)
−
ℏ

𝑆(𝑎)
+
ℏ + 𝑆(𝑎)

−
ℏ

𝑆(𝑏)
+
ℏ )∣𝑆𝑎, 𝑀𝑎 − 1⟩∣𝑆𝑏, 𝑀𝑏 + 1⟩

= 1
2ℏΩ𝑎𝑏⟨𝑆𝑎, 𝑀𝑎∣√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎∣𝑆𝑎, 𝑀𝑎⟩⟨𝑆𝑏, 𝑀𝑏∣√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏∣𝑆𝑏, 𝑀𝑏⟩

= 1
2ℏΩ𝑎𝑏√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏

(477)

Connection between rate and matrix element

To within better than an order of magnitude, the transition rate expected for a series of coherent transitions
among degenerate states would scale like:

Γ ∼ ⟨𝑆𝑎, 𝑀𝑎|⟨𝑆𝑏, 𝑀𝑏|�̂�|𝑆𝑎, 𝑀𝑎 − 1⟩|𝑆𝑏, 𝑀𝑏 + 1⟩
ℏ (478)

Indeed, a detailed calculation for the maximum rate was performed in [141] and was found to be:
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max{Γ} = 2|⟨𝑆𝑎, 𝑀𝑎|⟨𝑆𝑏, 𝑀𝑏|�̂�|𝑆𝑎, 𝑀𝑎 − 1⟩|𝑆𝑏, 𝑀𝑏 + 1⟩|
ℏ (479)

In general one needs to solve the dynamics problem to determine the actual rate for a particular problem,
which can be in the range

−2|⟨𝑆𝑎, 𝑀𝑎|⟨𝑆𝑏, 𝑀𝑏|�̂�|𝑆𝑎, 𝑀𝑎 − 1⟩|𝑆𝑏, 𝑀𝑏 + 1⟩|
ℏ ≤ Γ ≤ 2|⟨𝑆𝑎, 𝑀𝑎|⟨𝑆𝑏, 𝑀𝑏|�̂�|𝑆𝑎, 𝑀𝑎 − 1⟩|𝑆𝑏, 𝑀𝑏 + 1⟩|

ℏ
(480)

However, these systems “want” to evolve so that they proceed at their maximum rate [141]. Therefore,
assuming that the dynamics proceeds at the maximum rate, we then can write

Γ = Ω𝑎𝑏√𝑆𝑎(𝑆𝑎 + 1) − (𝑀𝑎 − 1)𝑀𝑎√𝑆𝑏(𝑆𝑏 + 1) − (𝑀𝑏 + 1)𝑀𝑏 (481)
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S6.13 Parameters for magnetic dipole coupling in excitation transfer from D2
donors to 4He receivers

This section contains a derivation of the magnetic interaction strength

𝑈2
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = ⟨ΦD2

|𝝁|Φ4He⟩ ⋅ ⟨Ψ𝑜𝑠𝑐|B̂B̂|Ψ𝑜𝑠𝑐⟩ ⋅ ⟨ΨD2
|𝝁|Ψ4He⟩ (482)

In what follows in this section we develop a rough estimate for this expression.

The magnetic dipole transition involves coupling with the deuterons in the molecular D2
5D 𝐽𝜋 = 1+ 𝑇 = 0

nuclear states [98], which can make spin-flip transitions to the 5𝐷 admixture of the ground state 4He nucleus.
To develop a rough approximation for the magnetic dipole matrix element we work with

|⟨D2
5𝐷 𝐽 = 1|𝜇𝑧|4He 1𝑆⟩|2 ∼ 0.15 𝜇2

𝑁 ∫
4 fm

0
𝑃 2

𝐷𝐷(𝑟)𝑑𝑟 (483)

where we have taken the fraction of the ground state 5D admixture to be 15%. From a numerical integration,
this evaluates to

|⟨D2
5𝐷 𝐽 = 1|𝜇𝑧|4He 1𝑆⟩|2 ∼ 3.8 × 10−91 𝜇2

𝑁 (484)

In order to develop estimates under conditions where substantial screening occurs, we write this in terms of
our estimate for the Gamow factor for the 5D channel evaluated with zero screening (see Table 7)

𝐺 = 94.8 (485)

This leads to

|⟨D2
5𝐷 𝐽 = 1|𝜇𝑧|4He 1𝑆⟩|2 ∼ 100 𝜇2

𝑁
𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−2𝐺 (486)

where (see S6.3)

𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

= 6.64 × 10−12 (487)

We end up with the estimate

|⟨D2
5𝐷 𝐽 = 1|𝜇𝑧|4He 1𝑆⟩| ∼ 10 𝜇𝑁√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺 (488)

For an external magnetic field from a magnet, we take the expectation over the associated oscillators (asso-
ciated with the spin wave modes) and write

⟨Ψ𝑜𝑠𝑐|B̂B̂|Ψ𝑜𝑠𝑐⟩ = 𝐵2 (489)

This results in a value of:

𝑈2
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = (10√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

2
(𝜇𝑁𝐵)2 (490)
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S6.14 Parameters for electric dipole coupling in excitation transfer from D2
donors to 4He receivers

The interaction term for electric coupling is

𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = ⟨ΦD2

|d|Φ4He⟩ ⋅ ⟨ÊÊ⟩𝑜𝑠𝑐 ⋅ ⟨ΦD2
|d|Φ4He⟩ (491)

In what follows in this section we develop a rough estimate for this expression.

The approach that we will take involves relating the dipole moment to the radiative decay rate. From
deuteron-deuteron collisions at low energy, we know that gammas can be emitted occasionally (Wilkinson
et al, 1985 [99]), and that this gamma radiation occurs through electric quadrupole (E2) coupling from
deuterons in the 5S channel. We are interested instead in electric dipole (E1) coupling from the 3P 𝐽 = 1
channel. We know from Langenbrunner 1990 [98] that the fusion to gamma astrophysical S-factor is not very
different at 100 keV than at lower energies, and that at 100 keV the 3P 𝐽 = 1 channel makes a dominant
contribution. This suggests that the E1 radiative decay is probably not different than the E2 radiative decay
rate (which could only be true if the electric dipole coupling were more forbidden). This suggest that we
might develop a rough estimate starting from the E2 radiative decay rate at zero energy.

The radiative decay rate for an electric dipole (E1) transtion can be expressed in terms of the dipole moment
according to

𝛾𝑟𝑎𝑑 = 4
3

1
4𝜋𝜖0

𝜔3

ℏ𝑐3 |⟨𝜙𝑓 |d|𝜙𝑖⟩|2 = 4
3𝛼𝜔3

𝑐2 ∣⟨𝜙𝑓 ∣d𝑒 ∣𝜙𝑖⟩∣
2

(492)

where ℏ𝜔 = Δ𝑀𝑐2 and where the fine structure constant is

𝛼 = 𝑒2

4𝜋𝜖0ℏ𝑐 (493)

We can write the square of the dipole moment in terms of the radiative decay rate according to

∣⟨𝜙𝑓 ∣d𝑒 ∣𝜙𝑖⟩∣
2

= 3
4

1
𝛼

𝑐2

𝜔3 𝛾𝑟𝑎𝑑 (494)

For the coupling term for electric dipole interaction we have

𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = ⟨𝜙𝑖|d|𝜙𝑓⟩ ⋅ ⟨ÊÊ⟩𝑜𝑠𝑐 ⋅ ⟨𝜙𝑓 |d|𝜙𝑖⟩

→ |⟨𝜙𝑓 |𝑑𝑧|𝜙𝑖⟩|2⟨𝐸2
𝑧 ⟩𝑜𝑠𝑐 (495)

in the event that the ground state is a 𝐽 = 0, 𝑀𝐽 = 0 state, and the upper state is a 𝐽 = 1, 𝑀𝐽 = 0 state.
We recall that the electric field responsible for accelerating nuclei in the lattice due to vibrations is related
to the energy in the vibrational model, and that we can write

⟨Ê𝑗Ê𝑘⟩𝑜𝑠𝑐 → ̂i𝑧 ̂i𝑧
√𝑀𝑗𝑀𝑘𝜔2

𝐴
𝑁𝑍𝑗𝑍𝑘𝑒2 (𝑃𝑑𝑖𝑠𝑠𝜏) (496)

where we assume the acoustic mode vibrations are z-directed and ℏ𝜔𝐴 is the acoustic phonon mode energy.
We have assumed that the unit vector associated with the phonon mode ê → ̂i𝑧 which assumes z-directed
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vibrations and also assumes a simple unit cell. This is the result we would get making use of the phonon
based electric field operators that we defined in Eq. 23. We can use this to write

𝑈2
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 3

4
1
𝛼

𝑐2

𝜔3 𝛾𝑟𝑎𝑑
𝑀𝑗𝜔2

𝐴
𝑁𝑍2 (𝑃𝑑𝑖𝑠𝑠𝜏)

= 3
4𝛼

𝛾𝑟𝑎𝑑
𝜔

𝜔2
𝐴

𝜔2
𝑀𝑗𝑐2

𝑁𝑍2 (𝑃𝑑𝑖𝑠𝑠𝜏)

= 3
4𝛼

ℏ𝛾𝑟𝑎𝑑
Δ𝑀𝑐2

(ℏ𝜔𝐴)2

(Δ𝑀𝑐2)2
𝑀𝑗𝑐2

𝑁𝑍2 (𝑃𝑑𝑖𝑠𝑠𝜏) (497)

In this case 𝛾𝑟𝑎𝑑 is given in terms of the fusion rate according to

𝛾𝑟𝑎𝑑 = 6 × 10−8𝛾𝐷𝐷 (498)

where the ratio 𝛾𝑟𝑎𝑑/𝛾𝐷𝐷 (portion of the DD fusion reactions that result in gamma emission) can be taken
from [99] and where the spontaneous fusion rate per D2, 𝛾𝐷𝐷, given by Koonin and Nauenberg 1989 [2] as

𝛾𝐷𝐷 ≈ 3 × 10−64 s−1 (499)
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S6.15 Parameters for relativistic coupling in excitation transfer from D2 donors
to 4He receivers

For relativistic coupling, the interaction strength is

𝑈2
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = ⟨ΦD2

|a|Φ4He⟩ ⋅ 𝑐2⟨P̂4HeP̂4He⟩ ⋅ ⟨ΦD2|a|Φ4He⟩ (500)

In what follows in this section we develop a rough estimate for this expression.

Working with the a operator in the form given above is labor-intensive since it involves two-body interactions
(and potentially three-body interactions in a nuclear model where three-body potentials are used). In [100]
an identity is given which allows the operator to be expressed in terms of one-body terms, which provides
for a major reduction in the effort needed for detailed calculations. The nonrelativistic reduction of the a
operator based on the identity is given by

a = 1
2𝑖

Δ𝐸
𝑀𝑐2 ( ∑

𝑗
𝝈𝑗 × 𝝅𝑗

𝑚𝑐 ) (501)

We can get a rough estimate for the a matrix element for a D2
3P (J=1) to 4He transition according to

|a| ∼ 1
2

24 MeV
4 × 931.5 MeV

ℏ (1 fm−1)
𝑚𝑐 𝑒−𝐺√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
= 1.7 × 10−9𝑒−𝐺

(502)

where 𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

is the ratio of the nuclear volume to molecular volume, which we take to be 2.6 × 10−12.

We then have an estimate for the matrix element associated with the D2/4He transition

⟨Φ𝐷2|a|Φ4He⟩ = 1
2

24 MeV
4 × 931.5 MeV

ℏ (1 fm−1)
𝑚𝑐 √𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺

= 6.7 × 10−4√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺
(503)

In section S6.9, we provide a more detailed calculation of the matrix element, which yields:

⟨Φ𝐷2|a|Φ4He⟩ = 0.0362√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺 (504)

The oscillator expectation value in the case of acoustic phonons is

⟨P̂𝑖P̂𝑗⟩𝑜𝑠𝑐 = ̂i𝑧 ̂i𝑧ℏ𝜔𝐴
√𝑀𝑗𝑀𝑘

2𝑁 (2⟨�̂�𝐴⟩ + 1) (505)

We can write this in terms of the dissipated power according to

⟨P̂𝑗P̂𝑘⟩𝑜𝑠𝑐 → ̂i𝑧 ̂i𝑧
ℏ𝜔𝐴√𝑀𝑗𝑀𝑘

𝑁
𝑃𝑑𝑖𝑠𝑠𝜏
ℏ𝜔𝐴

= ̂i𝑧 ̂i𝑧
√𝑀𝑗𝑀𝑘

𝑁 𝑃𝑑𝑖𝑠𝑠𝜏 (506)
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where j is the ground state nucleus on the donor side and k is the ground state nucleus on the receiver side.
The two masses (𝑀4𝐻𝑒 and 𝑀𝐷2

) are essentially the same as far as the phonons are concerned. In the case
of transfer from D2 donors to 4He receivers, we end up with

𝑈2
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = (0.0362√𝑣𝑛𝑢𝑐

𝑣𝑚𝑜𝑙
𝑒−𝐺)

2
𝑐2 𝑀𝑗

𝑁 𝑃𝑑𝑖𝑠𝑠𝜏 (507)
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S6.16 Parameters for relativistic coupling in excitation transfer from D2 donors
to Pd receivers

For relativistic coupling from a DD fusion transition to a heavy nucleus excitation the interaction strength
is

(𝑈𝑉 )𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = ⟨ΦD2
|a|Φ4He⟩ ⋅ 𝑐2⟨P̂4HeP̂Pd⟩ ⋅ ⟨ΦPd∗|a ⋅ ̂i𝑧|ΦPd⟩ (508)

In what follows in this section we develop a rough estimate for this expression.

For the first term, the same value applies as estimated in the previous section S6.15. For the last term, a
quantitative estimate is developed in section S6.11. This results in

|⟨ΦPd∗|a ⋅ ̂i𝑧|ΦPd⟩| → 2.6 × 10−5 𝑂 (509)

This results in an interaction strength of:

(𝑈𝑉 )𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 = ⟨ΦD2
|a|Φ4He⟩ ⋅ 𝑐2⟨P̂4HeP̂Pd⟩ ⋅ ⟨ΦPd∗|a ⋅ ̂i𝑧|ΦPd⟩

= (0.0362√𝑣𝑛𝑢𝑐
𝑣𝑚𝑜𝑙

𝑒−𝐺)𝑐2 √𝑀4𝐻𝑒𝑀𝑃𝑑
𝑁 𝑃𝑑𝑖𝑠𝑠𝜏(2.6 × 10−5 𝑂)

(510)
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S6.17 Proton, neutron and alpha removal energies of the stable Pd isotopes

The stability of the Pd bound states is limited by proton, neutron and alpha removal energies. These removal
energies for the stable Pd isotopes are given in Table 10:

Table 10: Proton, neutron and alpha removal energies.

Isotope 𝐼𝑝 (MeV) 𝐼𝑛 (MeV) 𝐼𝛼 (MeV)

Pd-102 7.732 10.467 2.131
Pd-104 8.572 9.884 2.596
Pd-105 8.667 7.026 2.888
Pd-106 9.257 9.470 3.229
Pd-108 9.857 9.137 3.856
Pd-110 10.523 8.716 4.434

We can see that it takes the least energy to remove an alpha particle for all of the stable Pd isotopes. We
expect states above the alpha removal energy to be unstable against alpha decay.
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S6.18 Estimating nuclear density of states for Pd nuclei

The density of nuclear states allows us to estimate how near the resonance condition the closest available
nuclear excited state is. It can be expressed as a summation over the different nuclear transitions

𝜌𝑁(𝐸) = ∑
𝑓

𝛿(𝐸 − 𝐸𝑓) (511)

Given the model for the levels of 120Sn in section S5.4, we can evaluate this expression.

No data sets for the nuclear density of states of Pd nuclei are available at this point. However, since Pd and
Sn nuclei are similarly sized, we use the 120Sn data as a proxy for our Pd estimates.

Gaussian fits for the nuclear density of states

The resulting density of states, along with a Gaussian fit, is shown in Figure S58.

Figure S58: Result of the calculation of ∑𝑖 𝛿(𝐸 − 𝐸𝑖) evaluated with the 120Sn data set (and assumed to be relevant for all
stable Pd isotopes).

Due to the disintegration threshold <9 MeV, no single state is available near 23.85 MeV. However, in section
S5.9 and onward we consider excitation transfer to a combination of lower-energy transitions that collectively
meet the resonance condition.

In the remainder of this section, we will estimate the density of states near 23.85 MeV that results from
combinations of lower-energy of states. We will start with considering combinations of two states (second
order) and then combinations of three states (third order).

We find that the distributions associated with the different orders are roughly Gaussian in shape. After
evaluating the summations at different orders, we fit them to Gaussian distributions.

For the lowest order contribution we evaluated
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∑
𝑖

𝛿(𝐸 − 𝐸𝑖) ≈ 𝐴1
1

√2𝜋𝜎2
1

𝑒−(𝐸−𝜇1)2/2𝜎2
1 (512)

where

𝜇1 ≈ 6.75 MeV 𝜎1 ≈ 1.28 MeV 𝐴1 ≈ 1.76 × 105 (513)

Nuclear density of states when considering combinations of two Pd transitions

At next order we evaluated the different terms, and once again fit them to a Gaussian

∑
𝑖

∑
𝑗

𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗) ≈ 𝐴2
1

√2𝜋𝜎2
2

𝑒−(𝐸−𝜇2)2/2𝜎2
2 (514)

with

𝜇2 ≈ 2 × 6.75 MeV 𝜎2 ≈
√

2 × 1.28 MeV 𝐴2 ≈ 2.15 × 108 (515)

The density of states from combinations of two transitions is shown in Figure S59.

Figure S59: Result of the calculation of ∑𝑖 ∑𝑗 𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗) evaluated with the 120Sn data set (and assumed to be relevant
for all stable Pd isotopes).

Nuclear density of states when considering combinations of three Pd transitions

For terms at the next order we obtained
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∑
𝑖

∑
𝑗

∑
𝑘

𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗 − 𝐸𝑘) ≈ 𝐴3
1

√2𝜋𝜎2
3

𝑒−(𝐸−𝜇3)2/2𝜎2
3 (516)

with

𝜇3 ≈ 3 × 6.75 MeV 𝜎3 ≈
√

3 × 1.28 MeV 𝐴3 ≈ 3.28 × 1011 (517)

The density of states from combinations of three transitions is shown in Figure S60.

Figure S60: Result of the calculation of ∑𝑖 ∑𝑗 ∑𝑘 𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗 − 𝐸𝑘) evaluated with the 120Sn data set (and assumed to
be relevant for all stable Pd isotopes).

Conclusions

Figure S61 shows the sum total density of states for one, two, and three transitions.

In the region of the resonance condition (23848109 eV), the resulting density of states is estimated to be
near:

𝜌(0)
𝑁 = 𝜌𝑁(Δ𝑀𝑐2) → 178 eV−1 (518)

Note that by including the possibility of more than three transitions in this estimation, the density of states
is expected to be even higher.
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Figure S61: Result of the summing the density of states for combinations of one, two and three nuclear transitions, evaluated
with the 120Sn data set (and assumed to be relevant for all stable Pd isotopes)
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S6.19 Estimating generalized nuclear density of states for Pd nuclei

In the expression for the Golden Rule in Eq. 207, there appears a summation over the different nuclear
transitions which we identify as a generalized density of states

̃𝜌𝑁(𝐸) = ∑
𝑓

( ∏ 𝐹(𝑔))
2

𝑓
𝛿(𝐸 − 𝐸𝑓) (519)

With this definition, the excitation transfer rate for transfer to multiple resonant receiver states can be
expressed as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = (2𝜋
ℏ |Δ𝒰|2)( ̃𝜌𝑁 ∗ 𝜌𝐴 ∗ 𝜌𝑂 ∗ 𝜌𝑃 )(𝐸) (520)

where the ∗ notation indicates that on the RHS we are convolving three densities of states 𝜌𝐴 ∗ 𝜌𝑂 ∗ 𝜌𝑃 with
this new generalized density of states ̃𝜌𝑁 , and evaluating the result at energy 𝐸.

Gaussian fits for the generalized nuclear density of states

Given the model for the levels and 𝑂-values from 120Sn in section S5.4, it is in principle straightforward
to evaluate the terms that appear in the summation. We put together some code to do exactly that, and
after plotting the results, we found that the distributions associated with the different orders were roughly
Gaussian in shape. After evaluating the summations at different orders, we fit them to Gaussian distributions,
with parameters that depend on 𝐸𝐴.

We recall (Eq. 197) that the dimensionless coupling constant for a Pd∗/Pd transition is

𝑔 = 865 𝑂Pd √𝑃𝑑𝑖𝑠𝑠𝜏𝐴
1 J

√𝑁APd
𝑁 (521)

where

𝐸𝐴 = 𝑃 (𝐴)
𝐷 𝜏𝐴 (522)

is the energy in the acoustic phonon mode. We identify the ratio 𝑁𝑃𝑑𝐴/𝑁 as the isotopic fraction of
the Pd isotope of the transition. From the discussion above we know that the center of mass momentum
operator includes contributions from the acoustic phonon mode, the optical phonon mode and the plasmon
mode. However, for the primary nuclear transitions under discussion here, the contribution from the acoustic
dominates under most conditions.

For the lowest order contribution we evaluated

∑
𝑖

𝐹 2(𝑔𝑖)𝛿(𝐸 − 𝐸𝑖) ≈ 𝐴1
1

√2𝜋𝜎2
1

𝑒−(𝐸−𝜇1)2/2𝜎2
1 (523)

where

𝜇1 ≈ 6.75 MeV 𝜎1 ≈ 1.28 MeV (524)
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Figure S62: Result of the calculation of ∑𝑖 𝐹 2(𝑔𝑖)𝛿(𝐸 − 𝐸𝑖) evaluated with the 120Sn data set (and assumed to be relevant
for all stable Pd isotopes) at 𝐸𝐴 = 10−3 J.

and

𝐴1 = 𝛼 𝐸𝐴
(𝐸𝑠

0 + 𝐸𝑠
𝐴)1/𝑠 (525)

with

𝛼 = 365.04 𝐸0 = 1.2132 × 10−3 J 𝑠 = 0.45300 (526)

The sum evaluated an an acoustic energy of 𝐸𝐴 = 1 mJ is shown in Figure S62.

At next order we evaluated the different terms, and once again fit them to a Gaussian

∑
𝑖

∑
𝑗

𝐹 2(𝑔𝑖)𝐹 2(𝑔𝑗)𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗) ≈ 𝐴2
1

√2𝜋𝜎2
2

𝑒−(𝐸−𝜇2)2/2𝜎2
2 (527)

with

𝜇2 ≈ 2 × 6.75 MeV 𝜎2 ≈
√

2 × 1.28 MeV (528)

and

𝐴2 = 𝛼 𝐸2
𝐴

(𝐸𝑠
0 + 𝐸𝑠

𝐴)2/𝑠 (529)

with

𝛼 = 133256 𝐸0 = 1.2132 × 10−3 J 𝑠 = 0.453003 (530)
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Figure S63: Result of the calculation of ∑𝑖 ∑𝑗 𝐹 2(𝑔𝑖)𝐹 2(𝑔𝑗)𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗) evaluated with the 120Sn data set (and assumed
to be relevant for all stable Pd isotopes) at 𝐸𝐴 = 10−3 J.

The sum evaluated an an acoustic energy of 𝐸𝐴 = 1 mJ is shown in Figure S63.

For terms at the next order we obtained

∑
𝑖

∑
𝑗

∑
𝑘

𝐹 2(𝑔𝑖)𝐹 2(𝑔𝑗)𝐹 2(𝑔𝑘)𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗 − 𝐸𝑘) ≈ 𝐴3
1

√2𝜋𝜎2
3

𝑒−(𝐸−𝜇3)2/2𝜎2
3 (531)

with

𝜇3 ≈ 3 × 6.75 MeV 𝜎3 ≈
√

3 × 1.28 MeV (532)

and

For the sum we have

𝐴3 = 𝛼 𝐸3
𝐴

(𝐸𝑠
0 + 𝐸𝑠

𝐴)3/𝑠 (533)

with

𝛼 = 4.864 × 107 𝐸0 = 1.2132 × 10−3 J 𝑠 = 0.453003 (534)

The sum evaluated an an acoustic energy of 𝐸𝐴 = 1 mJ is shown in Figure S64.

These results suggest that we might develop a model for all transitions based on

̃𝜌𝑁(𝐸) = ∑
𝑚

𝐴𝑚
1

√2𝜋𝜎2𝑚
𝑒−(𝐸−𝜇𝑚)2/2𝜎2

𝑚 (535)
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Figure S64: Result of the calculation of ∑𝑖 ∑𝑗 ∑𝑘 𝐹 2(𝑔𝑖)𝐹 2(𝑔𝑗)𝐹 2(𝑔𝑘)𝛿(𝐸 − 𝐸𝑖 − 𝐸𝑗 − 𝐸𝑘) evaluated with the 120Sn data set
(and assumed to be relevant for all stable Pd isotopes) at 𝐸𝐴 = 10−3 J.

𝜇𝑚 ≈ 𝑚 × 6.75 MeV 𝜎𝑚 ≈ √𝑚 × 1.28 MeV (536)

and

𝐴𝑚 = 𝛼𝑚 𝐸𝑚
𝐴

(𝐸𝑠
0 + 𝐸𝑠

𝐴)𝑚/𝑠 (537)

with

𝛼 = 365.03 𝐸0 = 1.2132 × 10−3 J 𝑠 = 0.45300 (538)

Generalized nuclear density of states at the fusion energy

It will be useful to have a parameterization of the generalized nuclear density of states

̃𝜌𝑁(𝐸) = ∑
𝑓

( ∏ 𝐹(𝑔))
2

𝑓
𝛿(𝐸 − 𝐸𝑓) (539)

evaluated specifically at the fusion transition energy

𝐸 = Δ𝑀𝑐2 = 23.85 MeV (540)

Results are shown in Figure S65.

We have fit this function over the 6 orders of magnitude shown according to
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Figure S65: Generalized nuclear density of states ̃𝜌𝑁 (𝐸𝐴) (blue); result of least squares fitting to Eq 541 (red).

̃𝜌𝑁(Δ𝑀𝑐2) = 𝑎 𝐸𝑛
𝐴

(𝐸𝑠
0 + 𝐸𝑠

𝐴)𝑚/𝑠 (541)

with fitting parameters

𝑎 = 3041.48 eV−1 𝐸0 = 2.50643 × 10−3 J

𝑠 = 0.55385 𝑛 = 3.51605 𝑚 = 3.35353 (542)

with 𝐸𝐴 in Joules. The resulting fit is shown against the Gaussian model in Figure S65. It will be convenient
to have a reference value against which to normalize. At 𝐸𝐴 = 1 J we can write

̃𝜌(0)
𝑁 = ̃𝜌𝑁(Δ𝑀𝑐2)∣

1 J
→ 2451 eV−1 (543)
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S6.20 Nuclear molecule cluster states

The modeling of atomic nuclei has long stood as a cornerstone in the field of nuclear physics, providing
significant insights into the structure, stability, and dynamics of nuclei. Traditional approaches, rooted in the
Liquid Drop Model (LDM) and the Shell Model, have offered a macroscopic and microscopic understanding
of nuclear forces, energy distributions, and the magic numbers that denote extra stability for certain nucleon
configurations. These models, while foundational, primarily treat the nucleus as a homogeneous collection
of nucleons or as shells of particles without explicit consideration of cluster formations.

Over time, the notion emerged that nucleons may form clusters associated with different nuclear states. Many
different cluster configurations are conceivable. Nuclear states have also been identified where nucleons are
concentrated in two (or more) separate regions rather than in a single nucleus that may be highly deformed.
Such nuclei have been referred to as nuclear molecules. Such considerations were motivated by the observation
of resonances in collisions between 12C nuclei [142]. Two nuclei close together at the fermi scale have the
possibility of forming a nuclear molecule, by analogy at the atomic scale of molecules formed through electron
bonding [143, 144, 145]. Earlier work on nuclear fission proposed essentially the same notion [146].

In [131] we consider variations of the liquid drop model for nuclear molecules from 106Pd. See Figure S66
as an example for a clustered state of Pd modeled with a basic (Bohr-Wheeler) liquid drop model approach.
An important conclusion is that reasonably stable binary nuclear molecules are not expected from liquid
drop models as normally used for fission calculations. However, this is likely a consequence of the modeling
approach and not because long-lived nuclear molecule states cannot exist. Perhaps the most significant
drawback of the Bohr-Wheeler liquid drop model for describing fission and fusion processes is that the
strong force interaction comes in through volume and surface energy terms, so that there is no residual
strong force interaction when the daughters are separated. More sophisticated model that we explored such
as the folded Yukawa model and the finite range liquid drop model (FRLDM) remedy this as the strong
force interaction is modeled through a scalar Yukawa potential between different elements of the liquid drop
mass density, which leads to a short range daughter-daughter attraction as might be expected intuitively.
However, what these models have in common is that they consider highly deformed single nuclei rather than
a molecule-like state consisting of two separate clusters and their lifetimes are generally very short.

Figure S66: Liquid drop model surface for an asymmetric binary nuclear molecule, where the parent A = 106 nucleus is split
into two daughter nuclei with Ab = 80, Ac = 26. Reproduced with permission from [131].

However, calculations done for C-C and for O-O suggest the existence of reasonably stable nuclear molecule
states which involve separated clusters rather than extreme nuclear deformation. The idea is that the
daughters remain localized as separate units with essentially no net relative kinetic energy. In [131], we
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developed a simple model based on this picture, which draws on the FRLDM approach not applied to the
nucleus as a whole but rather to the two daughter clusters individually. We assume that the daughters spend
a substantial fraction of their time apart. Then we can estimate the associated mass energy from the isotope
mass tables. And we can use the FRLDM model to get a rough estimate for the binding energy, and also
for the tunneling barrier potential. Similar models have been described in Greiner as two-core models (see
Figure S67).

Figure S67: Schematic picture of a nuclear system in the two-core approximation. Reproduced with permission from [147].

The model that we have studied estimates the nuclear molecule binding energy simply based on the difference
between the Coulomb and YPE energies for the nuclear molecule configuration and for infinite separation.
Assuming that the surface separation is fixed at 0.5 fm, then we can write

−𝐵 = 𝐸𝐶(𝑅𝑚𝑖𝑛) − 𝐸𝐶(∞) + 𝐸𝑌 𝑃𝐸(𝑅𝑚𝑖𝑛) − 𝐸𝑌 𝑃𝐸(∞) + 𝐸𝐷(𝑅𝑚𝑖𝑛) − 𝐸𝐷(∞) (544)

where 𝐵 is the binding energy of the nuclear molecule treated as two clusters, and where 𝐸𝐶 , 𝐸𝑌 𝑃𝐸 and
𝐸𝐷 are the Coulomb energy, Yukawa plus exponential energy, and density correction to the Coulomb energy.
From this we can find the excitation energy

𝐸𝑏𝑐 = 𝑀𝐵𝑐2 + 𝑀2
𝑐 − 𝑀𝑎𝑐2 − 𝐵 (545)

To estimate the tunneling rate we use

𝛾(tunnel) = Γ0𝑒−2𝐺 (546)

with the Gamow factor estimated using

𝐺 = ∫
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

√2𝜇(𝑉 (𝑟) − 𝐸)
ℏ2 𝑑𝑟 (547)

and

Ω0 = 1
2𝜔0 (548)

where the potential is approximated by

𝑉 (𝑟) → 𝑉0 + 1
2𝜇𝜔2

0(𝑟 − 𝑅𝑚𝑖𝑛)2 (549)

with the SHO potential energy taken arbitrarily to be 3 MeV at 1 fm distance from the bottom of the well.
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The results of this exercise are seen in Figs. S21 and S22, which contain first estimates for energy levels and
lifetimes of nuclear molecule states of stable Pd isotopes.

If we restrict attention to ground states of binary nuclear molecules in a naive picture where total angular
momentum is ignored, then the maximum density of nuclear molecule states is near 80/MeV at an excitation
energy near 50 MeV, which if they could all be reached would require an energy exchange of 12 keV per
excitation transfer. The total density of states including deformation, total angular momentum, rotations,
vibrations, and excitation of individual clusters to reasonably stable excited states would be expected to
increase the density of states by more than ten-fold (there remains issues of accessibility and suitability). If
we include the same generalizations for ternary and quaternary nuclear molecules (based on clusters), then
we would expect another order of magnitude or more increase in the density of states (again with issues of
reachability and suitability based on stability).
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S6.21 D2 molecules in Pd and 𝑁D2
per unit cell

The main article briefly reviewed arguments for the formation of D2 in metal lattices such as a Pd lattice.
Through much of this document, we presuppose the existence of comparatively large numbers of D2 molecules
in a PdD sample (and in section S6.30 a large number of HD molecules in a PdDH sample). The number of
number of D2 molecules per unit cell (𝑁D2

/𝑁) is a direct input to the excitation transfer rate expressions
(e.g., Eq. 152). This section will review in more detail the relevant literature and motivate the specific values
used in the rate estimates.

Since this section deals primarily with questions of nanostructure and atomic diffusion, which are governed
by the electronic configuration of the involved atoms, most discussions apply to different isotopes of hydrogen
equally. Some paragraphs explicitly refer to deuterium and some explicitly refer to hydrogen, depending on
what related literature is drawn on.

Di-deuterium

In diagrams of hydrogen bonding in H2O, the angle between the two hydrogen atoms is 104.5∘. In this case,
the two hydrogen atoms bond individually to the oxygen atom, and are well separated (1.515 Å). Oxygen
does not bind to H2 as a molecule, but instead the H2 is split into two separate H atoms. It was widely
believed to be impossible for there to be binding to an H2 molecule as a molecule up until about 1980, when
di-hydrogen complexes were discovered in experiments and studied theoretically (see the review Kubas 2014
[148]). Palladium is special in that a Pd atom can bind with molecular H2, so that the ground state of
PdH2 is a di-hydrogen complex [149]. The di-hydrogen complex PdH2 (and PdD2) has been observed in
experiments [150] [151] [152]. The H-H separation in ground state PdH2 is 0.854 Å, which is somewhat larger
than the 0.741 Å separation in molecular H2 in vacuum (the numbers are very similar for PdD2 and D2).

Note that di-hydrogen formation has been predicted for Pd clusters [153], which indicates that di-hydrogen
formation is not limited to individual Pd atoms.

D in monovacancies

While D2 is stable in vacuum, the conjectured formation of D2 in a metal deuteride is nontrivial. Earlier
literature considered the possibility of D double occupation of octahedral sites (O-sites) in bulk Pd but
concluded that the local electron density was too high, resulting in the occupation of anti-bonding sites [154]
[155] [156]. In contrast, Pd monovacancies have been suggested to allow for D2 molecule formation [157].

Monovacancies are traps for atomic D in PdD𝑥. Moreover, octahedral sites and tetrahedral sites (T-sites)
in a Pd monovacancy are nearly degenerate [158]. There are 6 O-sites and 8 T-sites in a Pd monovacancy,
which means that in principle there can be up to 14 deuterium atoms within a single monovacancy at high
D/Pd loading. As the loading of a monovacancy increases, the repulsion energy between nearby O-site and
T-site hydrogen atoms increases [159].

Surface chemisorbed H2

A computational paper suggests that an H2 molecule at the center of a Pd monovacancy is stable [160]. More
relevant to us would be a computational study of a dideuterium complex at the surface of a monovacancy,
but this particular configuration does not seem to have been studied in the literature to date.

However, the closely related problem of di-hydrogen formation on a clean Pd surface has been studied in
connection with catalytic activity. Metallic palladium is a catalyst for hydrogen dissociation, and when H2
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approaches a clean Pd surface, it breaks apart to form adsorbed hydrogen atoms on the surface (which can
subsequently diffuse into the lattice to become absorbed hydrogen). Because of this, the interaction of H2
with a clean Pd surface has been studied both experimentally and theoretically [161]. Pathways have been
identified in which the relative H-H separation increases as the molecular center of mass approaches the
surface.

It was unexpected that a weakly bound (chemisorbed) H2 feature showed up at low temperature in exper-
iments, where adsorbed H is present on a PdH𝑥 surface [162]. This has been studied theoretically in [163].
The chemisorbed H2 was observed to have a binding energy of 0.25 eV, which is lower than the 0.78 eV
binding energy of H2 in PdH2.

Due to the similarity between the clean surface of PdHx and the interior surface of a monovacancy in PdDx,
we expect chemisorbed D2 to be present in monovacancies. Based on the cited calculations of di-hydrogen
formation on Pd clusters [153], we conjecture that di-hydrogen (and dideuterium) can also form in Pd
monovacancies.

Superabundant vacancy formation

As mentioned above, monovacancies are traps for H in Pd (and also in other metals). The H binding energy
at an O-site is increased if the Pd neighbor is removed [157], which is equivalent to a reduction of the Pd
removal energy in fully loaded PdD relative to unloaded Pd. In essence, vacancy formation is made easier in
a highly-loaded metal hydride or deuteride. If the loading is sufficiently high, then we expect spontaneous
vacancy formation to occur as the vacancies are thermodynamically favored. At room temperature the
atomic self-diffusion coefficient of Pd is very low, which means that in the absence of stress, one would not
expect much vacancy formation to occur in an experiment at experimental timescales in a highly loaded
sample.

At high temperature, the situation is very different. Fukai and Okuma worked with highly-loaded PdH and
NiH at high temperature near 700 C (in a diamond anvil cell to provide a high-pressure environment) where
atomic self-diffusion is much faster, and reported a change in the lattice constant, which they attributed to
superabundant vacancy formation [164] [165]. A superabundant vacancy phase was proposed, in which 25%
of the Pd atoms are absent in an ordered Pd3vacH4 lattice. An x-ray diffraction study in Ni3vacH4 was
reported in support of this interpretation [166]. Statistical mechanics models have been developed for the
vacancy concentration in thermal equilibrium, for example as reported in [167].

We expect Pd samples made this way with superabundant vacancies to be particularly relevant to the models
presented in this document, which assume high concentrations of molecule-like deuteron pairs per unit cell.

The arguments above refer to pre-existing metal hydride samples. Another line of inquiry involves samples
that are built up via the co-deposition of metal and hydrogen atoms. For instance, newly formed PdD in a
co-deposition experiment has been proposed to include regions in the sample with superabundant vacancies
(at least as long as the co-deposition occurred slowly, and if the D/Pd ratio was high) [168] [169]. Thermal
desorption measurements have supported the conjecture that large numbers of vacancies can be present in
electrodeposited Ni and Cu samples [170].

We draw attention to recent work by Staker, who has proposed additional routes to vacancy formation in
PdD that do not involve co-deposition or heating [171].

Assumptions concerning vacancies in the models of this document

The discussion above is relevant to the quantitative estimates used in the models in this paper. If one were
to somehow work with an ideal single crystal PdD sample with no vacancies, then we would expect no
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dideuterium or chemisorbed deuterium to be present, in which case 𝑁D2
→ 0.

As a result, no obserable fusion rates would be expected in such a sample, independent of how the sample is
stimulated. For the models developed in this document to apply, we require molecular D2 to be present in
the lattice (in the PdD lattice, in the given case), which means that loaded vacancies are required. For the
quantitative estimates that we report in this work, we use

𝑁D2

𝑁 → 0.25 (550)

(including all nuclear spin states) which is a rough estimate that corresponds to the proposed superabundant
vacancy phase Pd3vacD4.

Note that there is no difficulty loading up molecular D2 in microvoids in PdD𝑥, which could be argued
would result in a large 𝑁D2

value. However, for such deuteron pairs we would expect little screening from
the comparably distant Pd electrons. We would also expect the coupling with optical phonon and plasmon
modes to be minimal. Chemisorbed D2 appears more relevant due to the greater chance for screening,
and for optical phonon exchange. Most interesting are dideuterium complexes, which expect to experience
comparably strong screening and coupling to lattice modes.

Relevant D2 molecule spin states

Among all available D2 molecules, there are only three 𝐽 = 1 3P states which have the potential to be
coupled to via the relativistic coupling, which we identified to be the strongest (by far) and therefore the
most relevant of the available couplings (S5.3).

If we consider a highly-excited acoustic phonon mode with linear polarization, then only one of the nine
𝐽 = 1 states will participate in the excitation transfer process.

This reduces the ratio by another factor of 1
9 , resulting in an overall

𝑁D2

𝑁 = 0.25 × 1
9 (551)

This is the value used in many of the transfer rate estimates in section S5.
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S6.22 Decoherence time and Dicke state fragility

The described excitation transfer dynamics require the development of cooperative (Dicke) enhancement
factors to increase the excitation transfer rate from the minimum rate Γ𝑚𝑖𝑛 toward the maximum rate Γ𝑚𝑎𝑥.
In order for the system to develop a cooperative (Dicke) enhancement there needs to be a commonality of
phase between the different constituent configurations.

Specifically, we have considered Dicke states on the donor side consisting of deuteron pairs and Dicke states
on the receiver side consisting of Pd nuclei.

If all of the dideuterium molecules are in the upper state (i.e., no transition to 4He has yet occured), then we
can think of having only a single configuration in connection with the a ⋅𝑐P transitions. When one excitation
transfer occurs (with uniform probability over all participating dideuterium molecules within the coherent
domain of the highly-excited phonon mode), then a very large number of configurations are generated, all
initially with a common phase (a Dicke state).

However, Dicke states are fragile, since the accumulation of phase differences among the different configura-
tions will destroy the associated cooperative enhancement factors. A critical parameter concerns how long
it takes for this to happen.

For cooperative (Dicke) enhancement factors to build up, we need the first excitation transfer from the
D2/4He fusion transition to occur in a time on the order of, or shorter than, this dephasing time.

Estimation of the D2 dissociation time

In order to develop an estimate for the dephasing time, we consider how long it might take for a D2 molecule
to dissociate in a monovacancy as the primary location of dideuterium molecules.

We first consider the problem of H diffusion in bulk palladium. The diffusion coefficient 𝐷 can be modeled
as arising from jumps from one O-site to another according to [172]

𝐷 = 𝑎2

12𝜏 (552)

where 𝑎 is the lattice parameter and 𝜏 is the time between jumps. At 20 C this time constant in beta phase
PdH𝑥 is reported to be [173] (where H/Pd is 0.65):

𝜏 = 44 ps (553)

The conclusion so far is that if D2 molecular dissociation works like diffusion, then the molecule cannot be
expected to survive very long near room temperature. Note that at low temperature, a longer dissociation
time can be expected.

If neighboring O-sites are occupied, then jumps to those sites are blocked, and the diffusion rate is reduced
by a blocking factor (1 − 𝜃) where 𝜃 is the D/Pd ratio [174].

We expect a deuterium atom in an O-site of a monovacancy that is partially loaded to make jumps to
neighboring unoccupied sites on a commensurate timescale. When a dideuterium molecule forms, we expect
it to dissociate in tens of picoseconds.

Since a monovacancy in Pd acts a trap for H and D, we would expect the monovacancy to be highly loaded,
even when the bulk has only modest loading. Besenbacher et al. (1990) [158] estimated the trapping energy
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for D in a monovacancy to be near 0.10 eV, which is comparable to the defect trapping energy of 0.13 eV
calculated in [175].

Consequently, at high D/Pd loading, we expect neighboring sites in a monovacancy to be nearly completely
blocked. For the hopping time, we obtain a broad estimate from

𝜏 = (1 − 0.65
1 − 𝜃𝑡

) 44 ps (554)

where 𝜃𝑡 is the ratio of D occupation to available O-sites and T-sites. If all of the neighboring sites are blocked,
then the hopping time diverges in this model. Based on these considerations and assuming a 𝜃𝑡 = 0.985, we
estimate the dissociation time from dissociation as

𝜏 ∼ 1 ns (555)

This number is consistent with a picture, in which the Pd monovacancies are fully packed with D, with
essentially no place for them to hop.

Note that D2 molecule occupation of the center of the monovacancy would be expected at high D/Pd
loading if all of the sites near the surface are occupied. Such states would have much greater stability, but
also reduced screening and weaker coupling to lattice vibrations.

When cooperative (Dicke) enhancement factors build up and a significant admixture of 4He occupation
develops, the lower average energy of the mixed state may help stabilize the dideuterium component.

Angular momentum changes

Angular momentum transitions are likely to dominate dephasing (likely to be faster than 1 ns but on a
similar order). At present, we do not have an estimate for this number based on experimental data. A model
will have to be developed for providing a precise estimate.

Fast phonon exchange and Dicke states

If there is substantial energy in the uniform acoustic phonon mode in the model, then we would expect fast
acoustic phonon exchange, as has been discussed in S5.11. This is significant in the context of Dicke state
fragility in that we would expect such transitions to help “refresh” the phase coherence between the different
configurations that make up the Dicke states, especially in the case of the Pd∗/Pd transitions. For this to
be a factor in the case of D2/4He Dicke states, the rate of acoustic phonon exchange associated with the
transition needs to exceed the corresponding dephasing rate.
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S6.23 Excitation transfer to multiple transitions

We will show in this section that excitation transfer can take place, in principle unmitigated to a combination
of multiple receiver states as long as the sum of those states meets the resonance condition.

We recall that destructive interference hinders excitatidon transfer, and we require there to be differences
in the pathways associated with loss in order for a finite contribution to arise at low order in perturbation
theory. At present we have an evaluation of the a-matrix element both with loss and without loss (sections
S6.5 and S6.6), which means that we can make use of these estimates to evaluate indirect coupling matrix
elements at lowest order in perturbation theory.

Even though we are interested in excitation transfer from one transition to multiple transitions, since we are
not used to non-zero contributions showing up at lowest order, it makes sense to see how this works for the
simplest case of excitation transfer from one transition to another first.

Transfer to one transition

A schematic of the excitation transfer scheme is shown in Figure S68, where we see the usual diamond type
of diagram that we associated with second-order excitation transfer. What is interesting about this scheme
is that the D2/4He matrix element has one value 𝑈 ′ when loss is present (from state 1), and a different value
𝑈 when there is no loss (from state 3).
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Figure S68: Schematic of excitation transfer from the D2/4He transition to one Pd∗/Pd transition.

For the different states in this model we define

Φ1 = ∣D2, Pd⟩ Φ2 = ∣ 4He, Pd⟩ Φ3 = ∣D2, Pd∗⟩ Φ4 = ∣ 4He, Pd∗⟩ (556)

We recall that the a ⋅ 𝑐P interaction preserves isospin, so that the D2 and 4He states are 𝑇 = 0 states. The
D2 state of interest is the 3P 𝐽𝜋 = 1− state, and the ground state is 1S 𝐽𝜋 = 0+. If the phonon (or plasmon)
mode has linear polarization in 𝑧, then the molecular D2 state would have 𝑀𝐽 = 0.
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The lowest-order contribution to the indirect matrix element 𝐻14 for this scheme is

𝐻14 → 𝐻12𝐻24
𝐸 − 𝐸2

+ 𝐻13𝐻34
𝐸 − 𝐸3

(557)

For the state energies we take

𝐸1 = 𝐸D2
+ 𝐸Pd 𝐸2 = 𝐸4He + 𝐸Pd 𝐸3 = 𝐸D2

+ 𝐸Pd∗ 𝐸4 = 𝐸4He + 𝐸Pd∗ (558)

We assume that

𝐸Pd∗ − 𝐸Pd = 𝐸D2
− 𝐸4He = Δ𝑀𝑐2 (559)

and take

𝐸 = 𝐸1 (560)

For the matrix elements we parameterize according to

𝐻12 = 𝑈 ′ 𝐻13 = 𝑉 𝐻24 = 𝑉 𝐻34 = 𝑈 (561)

Because fusion loss occurs in state 1 and fusion loss does not occur in state 3, the D2 wave function is
different, and 𝑈 ′ ≠ 𝑈 . It is useful to define

Δ𝑈 = 𝑈 ′ − 𝑈 (562)

The indirect coupling matrix element in terms of these parameters is

𝐻14 → Δ𝑈 𝑉
Δ𝑀𝑐2 (563)

Note that we are getting a non-zero result for excitation transfer at second order in this model, since
loss impact the wave functions, which impacts the matrix elements, and removes some of the destructive
interference.

If we define

𝑔 = |𝑉 |
Δ𝑀𝑐2 (564)

then we can write

𝐻14 = Δ𝑈𝑔 (565)

and

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|𝐻14| = 2

ℏ|Δ𝑈|𝑔 (566)
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We expect perturbation theory to give good results for

𝑔 ≪ 1 (567)

For 𝑔 ≥ 1 we will need to implement a non-perturbative analysis to get reliable results.

Transfer to two transitions

Now we would like to extend this calculation to model the lowest-order contribution to indirect coupling in
the case of excitation transfer to two (different) transitions. The levels and coupling are illustrated in Figure
S69. In the absence of loss we would expect no indirect coupling at fourth-order in perturbation theory;
however, if the D2 wave function in the initial state (state 1) is modified by fusion decay, then the associated
a-matrix element will be different than if there were no loss. For intermediate states at higher energy (states
3,4, and 7) fusion decay is not allowed since the basis state energies are well above the energy eigenvalue
𝐸. This is captured in the figure through the different coupling matrix element between states 1 and 2 (𝑈 ′),
where the other downward transitions are associated with 𝑈 . It is this difference which gives rise to indirect
coupling at lowest order.
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Figure S69: Schematic of excitation transfer from the D2/4He transition to two Pd∗/Pd transitions.

The state definitions in this case are
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Φ1 = ∣D2, Pd𝑎, Pd𝑏⟩ Φ2 = ∣ 4He, Pd𝑎, Pd𝑏⟩ Φ3 = ∣D2, Pd∗
𝑎, Pd𝑏⟩

Φ4 = ∣D2, Pd𝑎, Pd∗
𝑏⟩ Φ5 = ∣ 4He, Pd∗

𝑎, Pd𝑏⟩ Φ6 = ∣ 4He, Pd𝑎, Pd∗
𝑏⟩

Φ7 = ∣D2, Pd∗
𝑎, Pd∗

𝑏⟩ Φ8 = ∣ 4He, Pd∗
𝑎, Pd∗

𝑏⟩

(568)

The lowest-order contribution to the indirect matrix element is

𝐻18 → 𝐻12𝐻25𝐻58
(𝐸 − 𝐸2)(𝐸 − 𝐸5) + 𝐻12𝐻26𝐻68

(𝐸 − 𝐸2)(𝐸 − 𝐸6) + 𝐻13𝐻35𝐻58
(𝐸 − 𝐸3)(𝐸 − 𝐸5)

+ 𝐻13𝐻37𝐻78
(𝐸 − 𝐸3)(𝐸 − 𝐸7) + 𝐻14𝐻46𝐻68

(𝐸 − 𝐸4)(𝐸 − 𝐸6) + 𝐻14𝐻47𝐻78
(𝐸 − 𝐸4)(𝐸 − 𝐸7)

(569)

For the energies we take

𝐸1 = 𝐸D2
+ 𝐸𝑃𝑑𝑎 + 𝐸𝑃𝑑𝑏 𝐸2 = 𝐸4He + 𝐸𝑃𝑑𝑎 + 𝐸𝑃𝑑𝑏 𝐸3 = 𝐸D2

+ 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏

𝐸4 = 𝐸D2
+ 𝐸𝑃𝑑𝑎 + 𝐸𝑃𝑑𝑏∗ 𝐸5 = 𝐸4He + 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏 𝐸6 = 𝐸4He + 𝐸𝑃𝑑𝑎 + 𝐸𝑃𝑑𝑏∗

𝐸7 = 𝐸D2
+ 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏∗ 𝐸8 = 𝐸4He + 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏∗

(570)

with

𝐸D2
− 𝐸4He = Δ𝑀𝑐2 = 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏∗ − 𝐸𝑃𝑑𝑎 − 𝐸𝑃𝑑𝑏 (571)

and

𝐸 = 𝐸1 (572)

For the matrix elements we parameterize according to

𝐻12 = 𝑈 ′ 𝐻13 = 𝑉1 𝐻14 = 𝑉2
𝐻25 = 𝑉1 𝐻26 = 𝑉2
𝐻35 = 𝑈 𝐻37 = 𝑉2
𝐻46 = 𝑈 𝐻47 = 𝑉1

𝐻58 = 𝑉2 𝐻68 = 𝑉1 𝐻78 = 𝑈

(573)

We can evaluate and obtain

𝐻18 = Δ𝑈 𝑉1
𝜖1

𝑉2
𝜖2

(574)

where
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Δ𝑈 = 𝑈 ′ − 𝑈 𝜖1 = 𝐸𝑃𝑑𝑎∗ − 𝐸𝑃𝑑𝑎 𝜖2 = 𝐸𝑃𝑑𝑏∗ − 𝐸𝑃𝑑𝑏 (575)

As was the case above for excitation transfer to a single transition, the indirect coupling is proportional to
the difference in D2/4He matrix element, which is a result of the fusion loss being different on and off of
resonance.

It is convenient to define dimensionless coupling constants according to

𝑔1 = |𝑉1|
𝜖1

𝑔2 = |𝑉2|
𝜖2

(576)

In terms of these dimensionless coupling constants we have

𝐻18 = Δ𝑈𝑔1𝑔2 (577)

and

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|𝐻18| = 2

ℏ|Δ𝑈|𝑔1𝑔2 (578)

Once again we expect that when the dimensionless coupling constants are much less than unity that pertur-
bation theory will give us a good answer, but that a much bigger calculation will be required to get accurate
answers in the strong coupling limit.

Transfer to three transitions
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Figure S70: Schematic of excitation transfer from the D2/4He transition to three Pd∗/Pd transitions.
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The generalization of the model to excitation transfer from one transition to three transitions is straightfor-
ward conceptually, but begins to take some work since more states and transitions are involved. A schematic
of the levels and transitions that go into the lowest-order contribution to the indirect coupling coefficient in
perturbation theory are illustrated in Figure S70. Due to the complexity of the diagram, only a few of the
transitions are labeled. As was the case in the examples above, it is the difference in the coupling matrix
elements 𝑈 and 𝑈 ′ for the downward transitions that gives rise to the removal of part of the destructive
interference.

For the state definitions we can write

Φ1 = ∣D2, Pd𝑎, Pd𝑏, Pd𝑐⟩ Φ2 = ∣ 4He, Pd𝑎, Pd𝑏, Pd𝑐⟩ Φ3 = ∣D2, Pd∗
𝑎, Pd𝑏, Pd𝑐⟩

Φ4 = ∣D2, Pd𝑎, Pd∗
𝑏, Pd𝑐⟩ Φ5 = ∣D2, Pd𝑎, Pd𝑏, Pd∗

𝑐⟩ Φ6 = ∣ 4He, Pd∗
𝑎, Pd𝑏, Pd𝑐⟩

Φ7 = ∣ 4He, Pd𝑎, Pd∗
𝑏, Pd𝑐⟩ Φ8 = ∣ 4He, Pd𝑎, Pd𝑏, Pd∗

𝑐⟩ Φ9 = ∣D2, Pd∗
𝑎, Pd∗

𝑏, Pd𝑐⟩

Φ10 = ∣D2, Pd∗
𝑎, Pd𝑏, Pd∗

𝑐⟩ Φ11 = ∣D2, Pd𝑎, Pd∗
𝑏, Pd∗

𝑐⟩ Φ12 = ∣ 4He, Pd∗
𝑎, Pd∗

𝑏, Pd𝑐⟩

Φ13 = ∣ 4He, Pd∗
𝑎, Pd𝑏, Pd∗

𝑐⟩ Φ14 = ∣ 4He, Pd𝑎, Pd∗
𝑏, Pd∗

𝑐⟩ Φ15 = ∣D2, Pd∗
𝑎, Pd∗

𝑏, Pd∗
𝑐⟩

Φ16 = ∣ 4He, Pd∗
𝑎, Pd∗

𝑏, Pd∗
𝑐⟩
(579)

For this scheme we can write for the indirect matrix element

�̂�1,16 → 𝐻1,2𝐻2,6𝐻6,12𝐻12,16
(𝐸 − 𝐸2)(𝐸 − 𝐸6)(𝐸 − 𝐸12) + 𝐻1,2𝐻2,6𝐻6,13𝐻13,16

(𝐸 − 𝐸2)(𝐸 − 𝐸6)(𝐸 − 𝐸13) + 𝐻1,2𝐻2,7𝐻7,12𝐻12,16
(𝐸 − 𝐸2)(𝐸 − 𝐸7)(𝐸 − 𝐸12)

+ 𝐻1,2𝐻2,7𝐻7,14𝐻14,16
(𝐸 − 𝐸2)(𝐸 − 𝐸7)(𝐸 − 𝐸14) + 𝐻1,2𝐻2,8𝐻8,13𝐻13,16

(𝐸 − 𝐸2)(𝐸 − 𝐸8)(𝐸 − 𝐸13) + 𝐻1,2𝐻2,8𝐻8,14𝐻14,16
(𝐸 − 𝐸2)(𝐸 − 𝐸8)(𝐸 − 𝐸14)

+ 𝐻1,3𝐻3,6𝐻6,12𝐻12,16
(𝐸 − 𝐸3)(𝐸 − 𝐸6)(𝐸 − 𝐸12) + 𝐻1,3𝐻3,6𝐻6,13𝐻13,16

(𝐸 − 𝐸3)(𝐸 − 𝐸6)(𝐸 − 𝐸13) + 𝐻1,3𝐻3,9𝐻9,12𝐻12,16
(𝐸 − 𝐸3)(𝐸 − 𝐸9)(𝐸 − 𝐸12)

+ 𝐻1,3𝐻3,9𝐻9,15𝐻15,16
(𝐸 − 𝐸3)(𝐸 − 𝐸9)(𝐸 − 𝐸15) + 𝐻1,3𝐻3,10𝐻10,13𝐻13,16

(𝐸 − 𝐸3)(𝐸 − 𝐸10)(𝐸 − 𝐸13) + 𝐻1,3𝐻3,10𝐻10,15𝐻15,16
(𝐸 − 𝐸3)(𝐸 − 𝐸10)(𝐸 − 𝐸15)

+ 𝐻1,4𝐻4,7𝐻7,12𝐻12,16
(𝐸 − 𝐸4)(𝐸 − 𝐸7)(𝐸 − 𝐸12) + 𝐻1,4𝐻4,7𝐻7,14𝐻14,16

(𝐸 − 𝐸4)(𝐸 − 𝐸7)(𝐸 − 𝐸14) + 𝐻1,4𝐻4,9𝐻9,12𝐻12,16
(𝐸 − 𝐸4)(𝐸 − 𝐸9)(𝐸 − 𝐸12)

+ 𝐻1,4𝐻4,9𝐻9,15𝐻15,16
(𝐸 − 𝐸4)(𝐸 − 𝐸9)(𝐸 − 𝐸15) + 𝐻1,4𝐻4,11𝐻11,14𝐻14,16

(𝐸 − 𝐸4)(𝐸 − 𝐸11)(𝐸 − 𝐸14) + 𝐻1,4𝐻4,11𝐻11,15𝐻15,16
(𝐸 − 𝐸4)(𝐸 − 𝐸11)(𝐸 − 𝐸15)

+ 𝐻1,5𝐻5,8𝐻8,13𝐻13,16
(𝐸 − 𝐸5)(𝐸 − 𝐸8)(𝐸 − 𝐸13) + 𝐻1,5𝐻5,8𝐻8,14𝐻14,16

(𝐸 − 𝐸5)(𝐸 − 𝐸8)(𝐸 − 𝐸14) + 𝐻1,5𝐻5,10𝐻10,13𝐻13,16
(𝐸 − 𝐸5)(𝐸 − 𝐸10)(𝐸 − 𝐸13)

+ 𝐻1,5𝐻5,10𝐻10,15𝐻15,16
(𝐸 − 𝐸5)(𝐸 − 𝐸10)(𝐸 − 𝐸15) + 𝐻1,5𝐻5,11𝐻11,14𝐻14,16

(𝐸 − 𝐸5)(𝐸 − 𝐸11)(𝐸 − 𝐸14) + 𝐻1,5𝐻5,11𝐻11,15𝐻15,16
(𝐸 − 𝐸5)(𝐸 − 𝐸11)(𝐸 − 𝐸15)

(580)

We used energy definitions similar to what is described above
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𝐸1 = 𝐸D2
+ 𝐸𝑃𝑑𝑎 + 𝐸𝑃𝑑𝑏 + 𝐸𝑃𝑑𝑐

⋮
𝐸16 = 𝐸4He + 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏∗ + 𝐸𝑃𝑑𝑐∗

(581)

We took

𝐸 = 𝐸1 (582)

For the fusion transition matrix elements we parameterized according to

𝐻1,2 = 𝑈 ′ 𝐻3,6 = 𝑈 𝐻4,7 = 𝑈 𝐻5,8 = 𝑈
𝐻9,12 = 𝑈 𝐻10,13 = 𝑈 𝐻11,14 = 𝑈 𝐻15,16 = 𝑈 (583)

For the Pda∗/Pda transition matrix elements we have

𝐻1,3 = 𝑉1 𝐻2,6 = 𝑉1 𝐻4,9 = 𝑉1 𝐻5,10 = 𝑉1
𝐻7,12 = 𝑉1 𝐻8,13 = 𝑉1 𝐻11,15 = 𝑉1 𝐻14,16 = 𝑉1

(584)

For the Pdb∗/Pdb transition matrix elements we have

𝐻1,4 = 𝑉2 𝐻2,7 = 𝑉2 𝐻3,9 = 𝑉2 𝐻5,11 = 𝑉2
𝐻6,12 = 𝑉2 𝐻8,14 = 𝑉2 𝐻10,15 = 𝑉2 𝐻13,16 = 𝑉2

(585)

For the Pdc∗/Pdc transition matrix elements we have

𝐻1,5 = 𝑉3 𝐻2,8 = 𝑉3 𝐻3,10 = 𝑉3 𝐻4,11 = 𝑉3
𝐻6,13 = 𝑉3 𝐻7,14 = 𝑉3 𝐻9,15 = 𝑉3 𝐻12,16 = 𝑉3

(586)

We evaluated the indirect matrix element using Mathematica, with the result

𝐻1,16 → Δ𝑈 𝑉1
𝜖1

𝑉2
𝜖2

𝑉3
𝜖3

(587)

where

𝜖1 = 𝐸𝑃𝑑𝑎∗ − 𝐸𝑃𝑑𝑎 𝜖2 = 𝐸𝑃𝑑𝑏∗ − 𝐸𝑃𝑑𝑏 𝜖3 = 𝐸𝑃𝑑𝑐∗ − 𝐸𝑃𝑑𝑐 (588)

and

𝐸D2
− 𝐸4He = Δ𝑀𝑐2 = 𝐸𝑃𝑑𝑎∗ + 𝐸𝑃𝑑𝑏∗ + 𝐸𝑃𝑑𝑐∗ − 𝐸𝑃𝑑𝑎 − 𝐸𝑃𝑑𝑏 − 𝐸𝑃𝑑𝑐 (589)
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If we define dimensionless coupling coefficients according to

𝑔1 = |𝑉1|
𝜖1

𝑔2 = |𝑉2|
𝜖2

𝑔3 = |𝑉3|
𝜖3

(590)

then we can write

𝐻1,16 = Δ𝑈𝑔1𝑔2𝑔3 (591)

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2
ℏ|𝐻1,16| = 2

ℏ|Δ𝑈|𝑔1𝑔2𝑔3 (592)

Once again we expect these expressions to be accurate when all of the dimensionless coupling coefficients are
much less than unity. A much larger calculation will be required to get accurate indirect coupling coefficients
are rates in the strong coupling regime.

198



S6.24 Model development for excitation transfer from D2 to multiple receiver
states with oscillator energy exchange

In section S5.11, the goal is to estimate the transfer rate for excitation transfer from the fusion transition to
multiple receiver states, where the receiver states comprise all possible (energetically allowed) combinations
of Pd∗/Pd transitions under conditions where energy is exchanged from phonons and plasmons. Building a
model to describe excitation transfer in such a regime is complicated not least because, as we have seen in
section S5.11, we are in the strong coupling limit.

In this section we will draw upon non-perturbative techniques in particular the Lippmann-Schwinger formal-
ism. After some adjustment to the problem at hand, we will arrive at an expression for the transfer rate
that is comparably simple and takes the form of the convolution expression seen in Eq. 234 in section S5.11.

Starting point for a model for nuclear transitions and oscillators

Similar to what was done in section S5.1, we start out with a comprehensive Hamiltonian analogous to Eq.
15 (in this case not including magnons as we also did later in section S5.1 for simplicity):

�̂� = �̂�𝑛𝑢𝑐𝑙𝑒𝑖 + �̂�𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + �̂�𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝ℎ𝑜𝑛𝑜𝑛𝑠 + ̂𝑉𝑛𝑢𝑐𝑙𝑒𝑖,𝑝𝑙𝑎𝑠𝑚𝑜𝑛𝑠 (593)

We include selective loss in the Hamiltonian for the nuclei, per section S5.2 and for the interaction part, we
focus on the relativistic interaction as it has been shown to be the strongest among the relevant interactions
(S5.3).

This results in the Hamiltonian

�̂� = ∑
𝑗

∑
𝑘

{|𝜙𝑗⟩(𝑀𝑗𝑐2 − 𝑖ℏ
2 𝛾𝑗(𝐸))⟨𝜙𝑗|}

𝑘
+ ℏ𝜔𝐴 ̂𝑎†

𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†
𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†

𝑃 ̂𝑎𝑃

+ ∑
𝑗,𝑗′

∑
𝑘

{|𝜙𝑗′⟩⟨𝜙𝑗′ |a ⋅ 𝑐P̂𝑗|𝜙𝑗⟩⟨𝜙𝑗|}
𝑘

(594)

where the center of mass momentum operators for a uniform acoustic phonon mode, a uniform optical phonon
mode, and a uniform plasmon mode are given by

P̂𝑗 → e(𝐴)
𝑗 √ℏ𝑀𝑗𝜔𝐴

2𝑁 ( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) + e(𝑂)
𝑗 √ℏ𝑀𝑗𝜔𝑂

2𝑁 ( ̂𝑎𝑂 − ̂𝑎†
𝑂

𝑖 ) + e(𝑃)
𝑗 √𝑍2

𝑗 ℏ𝑀𝑗𝜔𝑃
2𝑁𝑒

( ̂𝑎𝑃 − ̂𝑎†
𝑃

𝑖 ) (595)

Pseudo-spin model for nuclear transitions and oscillators

Even though the model in Eq. 594 has already been drastically reduced from where we started in section
S5.1 (where initially all nuclear transitions, all possible low-order interactions with the lattice, and coupling
with all phonon modes, and potentially all plasmon modes, was considered), it is still quite complicated due
to the many-level formalism associated with the nuclear states. The technical issue here is that the ground
state(s) of a stable Pd nucleus (any isotope) will have a ⋅ 𝑐P transitions to many different excited states, and
in the strong coupling regime this will impact the model.
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It is possible to develop an approximate version of the model, where we work instead with many two-level
systems. With such an approximation we are able to develop first quantitative estimates for excitation
transfer rates (which can later be updated based on future versions of such models).

We start by writing the model that results as

�̂� = �̂�𝑓𝑢𝑠 + �̂�𝑃𝑑 + �̂�𝑜𝑠𝑐 + ̂𝑉 + ̂𝑈 (596)

with

�̂�𝑓𝑢𝑠 = Δ𝑀𝑐2
̂𝑆(𝑓𝑢𝑠)
𝑧
ℏ

�̂�𝑃𝑑 = ∑
𝑗

𝜖𝑗
̂𝑆(𝑗)
𝑧
ℏ

�̂�𝑜𝑠𝑐 = ℏ𝜔𝐴 ̂𝑎†
𝐴 ̂𝑎𝐴 + ℏ𝜔𝑂 ̂𝑎†

𝑂 ̂𝑎𝑂 + ℏ𝜔𝑃 ̂𝑎†
𝑃 ̂𝑎𝑃

̂𝑉 = ⟨D2|a ⋅ 𝑐P̂4𝐻𝑒|4He⟩(
̂𝑆(𝑓𝑢𝑠)
+
ℏ +

̂𝑆(𝑓𝑢𝑠)
−
ℏ )

̂𝑈 = ∑
𝑗

⟨Pd∗
𝑗|a ⋅ 𝑐P̂𝑃𝑑𝑗

|Pd𝑗⟩(
̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)
−
ℏ ) (597)

Note that in the model above (Eq. 594), we included nuclear decay channels (such as radiative decay, alpha
decay, and so forth), while in the pseudo-spin version of the model here, these terms are not included. The
issue here is that we anticipate fast transitions due to exchange with the oscillators, which has the potential
to slow down such decay processes. This effect is discussed in more details in section S5.13 and is related to
the quantum Zeno effect.

A formulation for excitation transfer to multiple receiver states

As can be see from sections S6.18 and S6.19 and as was discussed in section S5.10, the density of states
and therefore the achievable transfer rates are much higher at higher energies. At first glance, this is not
helpful, since the energy available from the fusion transition is fixed. However, if substantial energy (here
we consider tens of MeV and more) were made available to the nuclear system from the oscillator modes,
then it would be as if the fusion transition energy were boosted to much higher energy, where the number of
combinations of multiple Pd∗/Pd transitions is exponentially greater, and a much faster excitation transfer
rate is predicted. Since the exchange of phonons and plasmons with the nuclear system can be fast (see
sections S5.11 and S6.25), we consider such a large transfer of energy to be a possibility.

However, it takes time for a large amount of energy to be exchanged between lattice oscillator modes and
nuclear states. This timing requirement impacts the associated rate calculation. For example, at insufficiently
fast transfer rates associated with the comparatively low density of states region of the energy spectrum, it is
not possible for an excitation transfer to be completed until energy from the oscillators has been exchanged.
This means that we cannot expect a simple exponential decay rate. Also, if more energy is exchanged, then
the number of combinations of multiple Pd∗/Pd transitions is even larger (exponentially), which means that
after an initial delay, the system is much more likely to make a transition. Once again, this kind of process
is not going to be described by an exponential random process.
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The above considerations imply a rather complicated quantum dynamics model, which goes beyond what
we recognize to exist in the literature from other contexts.

Here, we will outline how we are thinking about the problem. We make use of a sector decomposition, or
dynamic resonating group method, and write coupled equations according to

𝑖ℏ 𝜕
𝜕𝑡Ψ0 = (�̂�𝑓𝑢𝑠 + �̂�𝑃𝑑 + �̂�𝑜𝑠𝑐 + ̂𝑈)Ψ0 + ̂𝑉−Ψ1

𝑖ℏ 𝜕
𝜕𝑡Ψ1 = (�̂�𝑓𝑢𝑠 + �̂�𝑃𝑑 + �̂�𝑜𝑠𝑐 + ̂𝑈)Ψ1 + ̂𝑉−Ψ2 + ̂𝑉+Ψ0

𝑖ℏ 𝜕
𝜕𝑡Ψ2 = (�̂�𝑓𝑢𝑠 + �̂�𝑃𝑑 + �̂�𝑜𝑠𝑐 + ̂𝑈)Ψ2 + ̂𝑉−Ψ3 + ̂𝑉+Ψ1

⋮ (598)

where Ψ0 includes states where no fusion transitions have occurred, where Ψ1 includes states where one
fusion transition has occurred, where Ψ2 includes states where two fusion transitions have occurred; and so
forth. The part of the ̂𝑉 operator that increases the number of fusion transitions that have occurred is ̂𝑉+,
and the part of ̂𝑉 that reduces the number of fusion transitions that have occurred is ̂𝑉−. We would expect
the system to evolve from the initial Ψ0 sector to the Ψ1 sector, then to the Ψ2 sector, and so forth.

Suppose that the system starts in the Ψ0 sector, and we were to “turn on” interactions favorable to excitation
transfer from the fusion transition. Because of the time needed for energy exchange with the oscillators, we
would expect no initial build up of probability amplitude in the Ψ1 sector. A dynamical Golden Rule
calculation would lead to an initially slow rate of moving from sector 0 to sector 1, i.e., a slow 𝛾1,0(𝑡). As
time goes on, many fast Pd∗/Pd transitions occur, which result in off-resonant occupation of excited Pd∗

states, along with the fast exchange of oscillator quanta. Eventually there is sufficient energy exchange
with the oscillators such that the dynamic Golden Rule rate estimate 𝛾1,0(𝑡) increases to the point where
we would expect the Ψ1 sector to begin accumulating occupation probability. As 𝑡 continues to increase,
𝛾1,0(𝑡) gets exponentially faster (since more energy from the oscillators is available, allowing for more Pd∗/Pd
transitions, when combined with the fusion mass energy difference), and we expect the probability that the
system remains in the Ψ0 sector to decrease rapidly.

We anticipate dynamics in the other sectors that is qualitatively similar. During an excitation transfer event,
the new sector is occupied over a relatively short duration, then energy exchange with oscillators begins. The
dynamical excitation transfer rate to the next sector is initially very slow, but builds up roughly exponentially
as more energy exchange with phonons occurs, and then excitation is transferred to the next sector.

Decay rate in terms of the Lippmann-Schwinger transition operator

Given the discussion above, we are interested in developing a relevant approximation scheme for the cor-
responding excitation transfer rate. Based on the process outlined above, we are thinking of a dynamical
Golden Rule transition rate, where ultimately we will require self-consistency between the estimated dynam-
ical Golden Rule rate and the time spent in a sector. This suggests the use of a finite time formalism related
to the Lippmann-Schwinger formalism.

The Lippmann-Schwinger formalism was developed for scattering problems, where the particles are initially
separate, then approach and interact, and then separate. Since the interaction in this kind of model is
localized to where the particles are close to each other, the calculation is “clean” in the sense that it is
possible in principle to include all effects that are connected to the interaction between the particles. The
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Golden Rule rate for transitions in this model can be expressed in terms of matrix elements of the transition
operator ̂𝑇 according to

𝛾𝑓𝑖 = 2𝜋
ℏ |⟨𝑓| ̂𝑇 |𝑖⟩|2𝜌 (599)

This formalism is attractive for the above reasons. However, we need to adapt it to our problem since it
is qualitatively different from a scattering problem. In order to do this, we need to first recall how the
transition operator is calculated in the Lippmann-Schwinger formalism.

We recall that the Lippmann-Schwinger equation is concerned with a scattering problem, in which an initial
incoming free state |𝜙⟩ interacts with a potential ̂𝑉 , resulting in an outgoing state |𝜓(+)⟩ according to

|𝜓(+)⟩ = |𝜙⟩ + 1
𝐸 − �̂�0 + 𝑖𝜖

̂𝑉 |𝜓(+)⟩ (600)

The transition operator satisfies

̂𝑉 |𝜓(+)⟩ = ̂𝑇 |𝜙⟩ (601)

This leads to

̂𝑇 |𝜙⟩ = ̂𝑉 |𝜙⟩ + ̂𝑉 1
𝐸 − �̂�0 + 𝑖𝜖

̂𝑇 |𝜙⟩ (602)

The transition operator ̂𝑇 satisfies

̂𝑇 = ̂𝑉 + ̂𝑉 1
𝐸 − �̂�0 + 𝑖𝜖

̂𝑇 (603)

Scholes and Ghiggino (1995) used this kind of formalism in the case of electronic energy transfer in multi-
chromophoric assemblies [176].

Finite duration Lippmann-Schwinger transition operator

We consider a modification of the Lippmann-Schwinger formulation, by working with a finite time duration
version of the model, which will provide for a rough approximation for the excitation transfer rate from the
fusion transition We can write the wave function in the Schrödinger picture at time 𝑡 = 𝜏 in terms of an
initial state at 𝑡 = 0 according to

𝜓(𝜏) = 𝑒−𝑖�̂�0𝜏/ℏ𝜓(0) + 1
𝑖ℏ ∫

𝜏

0
𝑒−𝑖�̂�0(𝜏−𝑡′)/ℏ ̂𝑉 𝜓(𝑡′)𝑑𝑡′ (604)

Recall that the Lipmann-Schwinger formalism is expressed in the interaction representation. Here we are
obliged to work in the Schrödinger picture due to the difficulties in developing eigenfunctions of the coupled
oscillator and nuclear problem. Because of this, in what follows we pursue the development of a crude model
in the Schrödinger picture.

A natural generalization of the Lippmann-Schwinger transition operator for this model is given by
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̂𝑉 𝜓(𝜏) = ̂𝑇𝑆(𝜏)𝜓(0) (605)

where ̂𝑇𝑆(𝜏) is a Schrodinger picture finite time generalization of the Lipmann-Schwinger ̂𝑇 operator. It
follows that the finite time transition operator satisfies

̂𝑇𝑆(𝜏)𝜓(0) = ̂𝑉 𝑒−𝑖�̂�0𝜏/ℏ𝜓(0) + ̂𝑉 1
𝑖ℏ ∫

𝜏

0
𝑒−𝑖�̂�0(𝜏−𝑡′)/ℏ ̂𝑇𝑆(𝑡′)𝜓(0)𝑑𝑡′ (606)

or

̂𝑇𝑆(𝜏) = ̂𝑉 𝑒−𝑖�̂�0𝜏/ℏ + ̂𝑉 1
𝑖ℏ ∫

𝜏

0
𝑒−𝑖�̂�0(𝜏−𝑡′)/ℏ ̂𝑇𝑆(𝑡′)𝑑𝑡′ (607)

We note that this Schrödinger picture ̂𝑇𝑆(𝜏) operator cannot be used directly in connection with the Golden
Rule (in contrast to the Lipmann-Schwinger formalism), since we do not have a clean isolation of the inter-
action responsible for a transition (again, in contrast to the Lipmann-Schwinger formalism). For excitation
transfer from the fusion transition, we need for there to be a fusion transition as well as a large number of
Pd∗/Pd transitions to exchange oscillator quanta. While the Schrödinger picture ̂𝑇𝑆(𝜏) operator includes
these Pd∗/Pd transitions related to the excitation transfer process of interest to us, it also includes many
Pd∗/Pd transitions that are unrelated to the excitation transfer process of interest. If were were able to
separate the Pd∗ transitions involved in the excitation transfer process from all of the others, then we could
use the part of ̂𝑇𝑆(𝜏) that is connected to the excitation transfer. We can implement this according to

𝛾𝑓𝑖 ≈ 2𝜋
ℏ |⟨𝑓| ̂𝑇 ′

𝑆(𝜏)|𝑖⟩|2𝜌 (608)

subject to the constraint that

𝜏 = 1
𝛾𝑓𝑖

(609)

At present we do not have a way to develop the clean separation that we need for the construction of ̂𝑇 ′
𝑆(𝜏).

On the other hand, we do have a way to develop a crude approximation for ̂𝑇 ′
𝑆(𝜏), which will lead to a rough

estimate for the decay rate associated with excitation transfer from the fusion transition.

Notion of “free” energy exchange between nuclei and oscillators

To estimate the excitation transfer rate, we need to evaluate matrix elements of the finite time transition
operator, which in general is a challenging calculation. From a mathematical point of view, we would want to
work in terms of eigenstates of the strongly coupled Pd and oscillator systems. At present, such an approach
appears formidable, and it is not obvious how to implement it practically.

The key feature of the model that we would like to address is the fast energy exchange between the Pd∗/Pd
transitions and the oscillators. When sufficient energy has been exchanged, the dynamical Golden Rule
excitation transfer rate becomes sufficiently fast that the system can go from one sector to another. A
complicating issue is that every ground state nucleus in the lattice makes transitions driven by the strongly
excited oscillators. Since the oscillators are at much lower frequency (i.e., energy) than the nuclear transitions,
in general this involves a polarization effect. If we were able to diagonalize the overall Pd and oscillator parts
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of the Hamiltonian, we would be able to identify which part of the energy exchange can be associated with
the formation of “dressed” states of the coupled system, and which part of the energy exchange involves the
conversion of oscillator energy to nuclear energy available for additional excitation transfers.

To develop an approximation, we make use of the notion of “free” energy exchange between Pd nuclei and
oscillators. The Pd∗/Pd transitions that are involved in the excitation transfer process create and destroy
oscillator quanta rapidly, and we seek to model these dynamics. We expect that only the transitions directly
involved in the nuclear part of the excitation transfer should be included in an estimation of the energy
exchange for that excitation transfer.

In principle, we might be able to make use of some kind of clever summation of Feynman diagrams in order to
determine the energy exchange along with the nuclear transitions directly associated with excitation transfer.
However, this is complicated by the very large number of them, by the divergences expected in the strong
coupling regime, and also by the finite time limitation. Presumably, all of these issues could in the future
be addressed. At the moment, this kind of detailed approach goes beyond the scope of this document.

In the approach presented here, we consider as an idealization a 𝑡 = 0 situation, both for the initial excitation
transfer (from the fusion transition) as well as for subsequent excitation transfers, where there has been no
interaction between the oscillators and Pd∗/Pd transitions involved in the excitation transfer of interest. We
would expect that the few Pd∗/Pd transitions that can be excited with the fusion energy Δ𝑀𝑐2 will be
excited essentially immediately, allowing there to be mixing (due to these transitions) with the oscillators.
At this point we would expect coherent energy exchange with the oscillators to get started.

As more energy is exchanged, there is a probability distribution associated with energy exchange between
oscillators and nuclear states. Within this probability distribution is the possibility of energy beyond what
is supplied by the fusion transition and more Pd∗/Pd transitions can be part of the excitation transfer from
the fusion transition. This makes energy exchange with the oscillator faster. These dynamics continue up
until the point where eventually probability amplitude couples into the next sector.

When excitation transfer from the fusion transition is complete, we expect that energy will be conserved;
the fusion energy and energy from the oscillators go into promoting Pd∗ excitation. However, between 𝑡 = 0
and 𝑡 = 𝜏 there will be many states with some occupation that are off of resonance, and many of these will
have more Pd∗ excitation. The question is whether we should think of the dynamics as being mostly on
resonance, in which case the number of Pd∗/Pd transitions that couple to the oscillators will be limited, and
the energy exchange that we should model will be correspondingly limited. Alternatively, if what matters
is the number of Pd∗/Pd transitions that are promoted in the end, then we should use the larger number
throughout.

Were we to imagine a calculation in which all possible Feynman diagrams were included consistent with
energy conservation at the end, we would expect the majority of basis states contributing to not be so
constrained by energy conservation. Energy conservation comes into the problem at the end; however, since
many of the transitions are in the strong coupling regime, we expect contributions from basis states that
are far off of resonance. This argument suggests that it would be reasonable to assume that (at least) the
number of transitions that are promoted as a result of excitation from the fusion transition should contribute
to energy exchange with the oscillator.

Keeping our focus on energy exchange between the Pd∗/Pd transitions directly involved in the excitation
transfer process with the oscillators, we note that there is not much difference between the energy exchange
with one configuration of Pd∗/Pd transitions and another. This suggests that we can work with an estimate of
the average energy exchange, based on an average number of final state transitions involved in the excitation
transfer, and an average strength of an individual transition (in terms of the transitions’ 𝑂-values, see
section S5.4). Next, we will develop an implementation of this idea, consistent with the finite time transition
operator introduced above.
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The finite time transition operator and energy exchange

The finite time transition operator ̂𝑇 (𝜏) in this expression includes the dynamics described by

̂𝑇𝑆(𝜏)Ψ(0) = ̂𝑉 𝑒−𝑖�̂�0𝜏/ℏΨ(0) + ̂𝑉 1
𝑖ℏ ∫

𝜏

0
𝑒−𝑖�̂�0(𝜏−𝑡′)/ℏ ̂𝑇𝑆(𝑡′)Ψ(0)𝑑𝑡′ (610)

where

�̂�0 = �̂�𝑓𝑢𝑠 + �̂�𝑃𝑑 + �̂�𝑜𝑠𝑐 + ̂𝑈 (611)

This connects the formalism under discussion to the conceptual model laid out above. The finite time
transition operator includes the fusion transition. Based on the discussion above, our focus will be on the
dynamics connected to a single fusion transition. Of key interest is the nuclear part of the problem, where
excitation is transferred from a fusion transition to many Pd∗/Pd transitions, and the energy exchange
part of the problem where oscillator energy is made available to the nuclei. However, because nuclear and
oscillator degrees of freedom are mixed in the absence of a fusion transition, we need to separate unwanted
interactions from the ones that are critical.

Approximation for the finite time transition operator

To proceed we need to make use of our intuition about the associated dynamics. If we focus on energy
exchange with the oscillator, then we consider a plausible approximation to be

̂𝑇 ′
𝑆(𝜏) ∼ 𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ (612)

where �̂�𝑓𝑟𝑒𝑒 is an average model for oscillator exchange that will be described shortly (and which we can
carry out calculations with).

However, there is a challenge in separating the nuclear and oscillator degrees of freedom in the finite time
transition operator. Energy exchange with the oscillator will provide for coupling to oscillator states, where a
very large number of oscillator quanta have been gained or lost, so that the oscillator energy will be different.
In weak coupling, we would expect the Pd plus oscillator energy not to change much (except due to energy
input from the fusion transition). Since there must be overall energy conservation at the end, if we couple
to an oscillator state that has less energy, then whatever nuclear states that we couple to have more energy.

What is lacking here is a useful notation. For this, we use

̂𝑇 ′
𝑆(𝜏) → ( ̂𝑇 ′

𝑓𝑢𝑠,𝑃𝑑(𝜏)𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ)
Δ𝑀𝑐2

(613)

where the idea is to implement a separation of the nuclear and oscillator degrees of freedom, but in doing so
assuring that energy conservation is maintained in the process. The transition operator associated with the
fusion transition and Pd system transitions ̂𝑇 ′

𝑓𝑢𝑠,𝑃𝑑(𝜏) in this case is equivalent to what we would get in the
absence of energy exchange with the oscillators, but with a different fusion mass difference energy.
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Initial and final states

In the excitation transfer process, a D2 molecule is converted into a 4He atom; many ground state Pd nuclei
are promoted to excited states and a great many phonons and plasmons are exchanged. If there are initially
excited Pd∗ states (due to off-resonance effects in connection with strong coupling), then we expect that
some of these will be de-excited during the excitation transfer process. To model this, we can write for the
initial state

Ψ𝑖 = |𝑆, 𝑀⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀𝑗⟩)
𝑃𝑑

∣𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩
𝑜𝑠𝑐

(614)

Similarly, for the final state we have

Ψ𝑓 = |𝑆, 𝑀 − 1⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀 ′
𝑗⟩)

𝑃𝑑
∣𝑛′

𝐴, 𝑛′
𝑂, 𝑛′

𝑃 ⟩
𝑜𝑠𝑐

(615)

Energy conservation leads to the requirement that

Δ𝑀𝑐2 + ∑
𝑗

𝜖𝑗𝑀𝑗 + 𝑛𝐴ℏ𝜔𝐴 + 𝑛𝑂ℏ𝜔𝑂 + 𝑛𝑃 ℏ𝜔𝑃 = ∑
𝑗

𝜖𝑗𝑀 ′
𝑗 + 𝑛′

𝐴ℏ𝜔𝐴 + 𝑛′
𝑂ℏ𝜔𝑂 + 𝑛′

𝑃 ℏ𝜔𝑃 (616)

Estimate for the excitation transfer rate

For the excitation transfer rate Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 we can write

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = ∑
𝑓

|⟨Ψ𝑓 | ̂𝑇 ′
𝑆(𝜏)|Ψ𝑖⟩|2𝛿(𝐸𝑖 − 𝐸𝑓) (617)

We can make use of the crude approximation for the transition operator and write

⟨Ψ𝑓 | ̂𝑇 ′
𝑆(𝜏)|Ψ𝑖⟩ = ⟨|𝑆, 𝑀 − 1⟩𝑓𝑢𝑠( ∏

𝑗
|𝑆𝑗, 𝑀 ′

𝑗⟩)
𝑃𝑑

|𝑛′
𝐴, 𝑛′

𝑂, 𝑛′
𝑃 ⟩𝑜𝑠𝑐∣

̂𝑇 ′
𝑓𝑢𝑠,𝑃𝑑(𝜏)𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ∣|𝑆, 𝑀⟩𝑓𝑢𝑠( ∏

𝑗
|𝑆𝑗, 𝑀𝑗⟩)

𝑃𝑑
|𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩𝑜𝑠𝑐⟩

= ⟨|𝑆, 𝑀 − 1⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀 ′
𝑗⟩)

𝑃𝑑
∣ ̂𝑇 ′

𝑓𝑢𝑠,𝑃𝑑(𝜏)∣|𝑆, 𝑀⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀𝑗⟩)
𝑃𝑑

⟩

⟨𝑛′
𝐴, 𝑛′

𝑂, 𝑛′
𝑃 ∣𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ∣𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩

𝑜𝑠𝑐
(618)

where we keep in mind that we need to enforce energy conservation. We can use this to write for the
excitation transfer rate
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Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = ∑
{𝑀′

𝑗}
∑
𝑛′

𝐴

∑
𝑛′

𝑂

∑
𝑛′

𝑃

∣⟨|𝑆, 𝑀 − 1⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀 ′
𝑗⟩)

𝑃𝑑
∣ ̂𝑇 ′

𝑓𝑢𝑠,𝑃𝑑(𝜏)∣|𝑆, 𝑀⟩𝑓𝑢𝑠( ∏
𝑗

|𝑆𝑗, 𝑀𝑗⟩)
𝑃𝑑

⟩∣
2

∣⟨𝑛′
𝐴, 𝑛′

𝑂, 𝑛′
𝑃 ∣𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ∣𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩

𝑜𝑠𝑐
∣
2

𝛿(Δ𝑀𝑐2 − ∑
𝑗

𝜖𝑗(𝑀 ′
𝑗 − 𝑀𝑗) − (𝑛′

𝐴 − 𝑛𝐴)ℏ𝜔𝐴 − (𝑛′
𝑂 − 𝑛𝑂)ℏ𝜔𝑂 − (𝑛′

𝑃 − 𝑛𝑃 )ℏ𝜔𝑃 )

(619)

Eq. 619 represents a major goal of this section and is equivalent to the simplified transfer rate expression
(Eq. 234) used in section S5.11.

In the limit of a continuum density of states the sums becomes essentially the familiar integral from Eq. 234.

Note that there are many more terms associated with the approximation far off of resonance contained within
the summation than would have been obtained were we able to work with the exact finite time transition
operator; however, by enforcing energy conservation, these non-physical terms are eliminated.

This excitation transfer rate depends explicitly on 𝜏 , and we can work with this value in order to estimate
the time-dependent Golden Rule rate associated with a completed excitation transfer. To that end we set

𝜏 = 1
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(620)

for self-consistency. We would like for the excitation transfer rate to be on the order of the time 𝜏 required
to reach conditions where the excitation transfer can happen on a relevant timescale.

The goal now is to relate the expressions in Eq. 619 to familiar physical parameters such as the power in a
phonon mode P. The remainder of this section will focus on deriving an expression for

∣⟨𝑛′
𝐴, 𝑛′

𝑂, 𝑛′
𝑃 ∣𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ∣𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩

𝑜𝑠𝑐
∣
2

(621)

as an integral part of Eq. 619. As a part of this process �̂�𝑓𝑟𝑒𝑒 needs to be determined, which is done next.

Time-dependent Hartree approximation

It is possible to gain some understanding of how the three systems interact through the use of a time-
dependent Hartree approximation. We can approximate the overall wave function as a product of individual
fusion transition, Pd, and oscillator components according to

Ψ = 𝜓𝑓𝑢𝑠𝜓𝑃𝑑𝜓𝑜𝑠𝑐 (622)

where the associated time-dependent Hartree equations are

𝑖ℏ 𝜕
𝜕𝑡𝜓𝑓𝑢𝑠 = �̂�𝑓𝑢𝑠𝜓𝑓𝑢𝑠 + ⟨𝜓𝑜𝑠𝑐| ̂𝑉 |𝜓𝑜𝑠𝑐⟩𝑜𝑠𝑐𝜓𝑓𝑢𝑠 (623)
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𝑖ℏ 𝜕
𝜕𝑡𝜓𝑃𝑑 = �̂�𝑃𝑑𝜓𝑃𝑑 + ⟨𝜓𝑜𝑠𝑐| ̂𝑈 |𝜓𝑜𝑠𝑐⟩𝑜𝑠𝑐𝜓𝑃𝑑 (624)

𝑖ℏ 𝜕
𝜕𝑡𝜓𝑜𝑠𝑐 = �̂�𝑜𝑠𝑐𝜓𝑜𝑠𝑐 + ⟨𝜓𝑓𝑢𝑠| ̂𝑉 |𝜓𝑓𝑢𝑠⟩𝑓𝑢𝑠𝜓𝑜𝑠𝑐 + ⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑𝜓𝑜𝑠𝑐 (625)

By separating the different degrees of freedom, it becomes much easier to solve for the dynamics and dis-
tributions associated with each degree of freedom individually. It may be that in the future an improved
model for excitation transfer could be developed based on this kind of approach. However, for this to work,
there may need to be a separate calculation of the part of the oscillator distribution that can be associated
directly with excitation transfer transitions in connection with energy exchange as mentioned above.

To estimate the part of the energy exchange with the oscillators that is associated with the Pd∗/Pd transitions
involved in the excitation transfer process, we write

�̂�𝑓𝑟𝑒𝑒 → �̂�𝑜𝑠𝑐 + (⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(626)

It is unlikely that this can be evaluated accurately in the framework of a time-dependent Hartree model.
More practical is to make use of

�̂�𝑓𝑟𝑒𝑒 ≈ �̂�𝑜𝑠𝑐 + (⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(627)

which involves the associated average (or an estimate for the average) of ̂𝑈 defined in Eq. S6.24.

For simplicity, we will focus on energy exchange with highly-excited acoustic phonons, so that

�̂�𝑜𝑠𝑐 → ℏ𝜔𝐴 ̂𝑎†
𝐴 ̂𝑎𝐴 (628)

For the interaction with the Pd∗/Pd transitions involved in excitation transfer from the fusion transition, we
take

(⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= (⟨𝜓𝑃𝑑∣ ∑
𝑗

⟨Pd∗
𝑗|a ⋅ 𝑐P̂𝑃𝑑𝑗

|Pd𝑗⟩(
̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)−
ℏ )∣𝜓𝑃𝑑⟩

𝑃𝑑
)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= ( ∑
𝑗

⟨𝜓𝑃𝑑∣(
̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)−
ℏ )∣𝜓𝑃𝑑⟩

𝑃𝑑
⟨Pd∗

𝑗|a|Pd𝑗⟩ ⋅ 𝑐P̂𝑃𝑑𝑗
)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= ( ∑
𝑗

⟨
̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)−
ℏ ⟩

𝑃𝑑
⟨Pd∗

𝑗|a|Pd𝑗⟩ ⋅ e(𝐴)
𝑗 √𝑀𝑗𝑐2ℏ𝜔𝐴

2𝑁 )
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) (629)

We can now relate this to our estimate of the acoustic phonon exchange rate Γ𝐴(𝑗) which we first introduced
in section S5.11 and expanded on in section S6.25, namely:

Γ𝐴(𝑗) ≈ 2
ℏ|⟨Pd∗(𝑗)|a|Pd⟩ ⋅ e(𝐴)

𝑗 |√𝑀𝑗𝑐2𝑛𝐴ℏ𝜔𝐴√𝑁𝑃𝑑𝑗

𝑁 (630)
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In terms of this rate we have

(⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= ℏ
2 ( ∑

𝑗
⟨

̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)−
ℏ ⟩

𝑃𝑑
√ 1

𝑁𝑃𝑑𝑗

Γ𝐴(𝑗))
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

√ 1
2𝑛𝐴

( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) (631)

assuming that

⟨Pd∗
𝑗|a|Pd𝑗⟩ ⋅ e(𝐴)

𝑗 = |⟨Pd∗
𝑗|a|Pd𝑗⟩ ⋅ e(𝐴)

𝑗 | (632)

which involves defining the phases of the excited Pd∗ states relative to the ground states appropriately. We
estimate the number of transitions involved in the excitation transfer according to

( ∑
𝑗

⟨
̂𝑆(𝑗)
+
ℏ +

̂𝑆(𝑗)−
ℏ ⟩

𝑃𝑑
√ 1

𝑁𝑃𝑑𝑗

Γ𝐴(𝑗))
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

→ 𝑛𝑗Γ𝐴 (633)

where Γ𝐴 is the average of Γ𝐴(𝑗), and where 𝑛𝑗 is the estimated number of transitions involved.

This leads to

(⟨𝜓𝑃𝑑| ̂𝑈 |𝜓𝑃𝑑⟩𝑃𝑑)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

→ ℏ
2 (𝑛𝑗Γ𝐴)√ 1

2𝑛𝐴
( ̂𝑎𝐴 − ̂𝑎†

𝐴
𝑖 ) (634)

where it should be noted that we’ve neglected Dicke enhancement factors for the Pd∗/Pd transitions (which
are not straightforward to estimate in this kind of model), and assumed that the interaction between the
acoustic phonons and nuclei can be modeled as a polarization [177].

In the end, the Hamiltonian for “free” exchange in the case of acoustic phonons is

�̂�𝑓𝑟𝑒𝑒 → ℏ𝜔𝐴 ̂𝑎†
𝐴 ̂𝑎𝐴 + ℏ

2 (𝑛𝑗Γ𝐴)√ 1
2𝑛𝐴

( ̂𝑎𝐴 − ̂𝑎†
𝐴

𝑖 ) (635)

Finite basis expansion and evolution equation for the expansion coefficients

Assuming only acoustic phonons in Eq. 625, then 𝜓𝑜𝑠𝑐 → 𝜓𝐴. We make a finite basis expansion for the
acoustic phonons according to

𝜓𝐴 = ∑
𝑛

𝑖𝑛𝑐𝑛(𝑡)𝜙(𝐴)
𝑛 (636)

In addition, we can drop the fusion part from Eq. 625 because it is small due to the Coulomb barrier. The
associated evolution equation for the expansion coefficients is then

𝑖ℏ 𝑑
𝑑𝑡𝑐𝑛(𝑡) = ℏ𝜔𝐴𝑛𝑐𝑛(𝑡) − ℏ

2 (𝑛𝑗Γ𝐴)(
√𝑛𝑐𝑛−1(𝑡) + √𝑛 + 1𝑐𝑛+1(𝑡)

√2𝑛(0)
𝐴

) (637)
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where 𝑛(0)
𝐴 is the number of acoustic phonons used for the estimate of Γ𝐴. In the event that the fusion energy

Δ𝑀𝑐2 is much smaller than the energy in the acoustic phonon mode

Δ𝑀𝑐2 ≪ 𝑛𝐴ℏ𝜔𝐴 = 𝐸𝐴 (638)

then we can simplify to

𝑖ℏ 𝑑
𝑑𝑡𝑐𝑛(𝑡) = 𝑛ℏ𝜔𝐴𝑐𝑛(𝑡) − ℏ

2 (𝑛𝑗Γ𝐴)(𝑐𝑛−1(𝑡) + 𝑐𝑛+1(𝑡)√
2

) (639)

In the event that acoustic phonon exchange is fast such that

ℏ
2 (𝑛𝑗Γ𝐴) ≫ 10 Δ𝑀𝑐2 ≪ 𝑛ℏ𝜔𝐴 (640)

then ℏ𝜔𝐴𝑛𝑐𝑛(𝑡) can be considered as a constant and dropped form the equation, giving:

𝑖ℏ 𝑑
𝑑𝑡𝑐𝑛(𝑡) = − ℏ

2 (𝑛𝑗Γ𝐴)(𝑐𝑛−1(𝑡) + 𝑐𝑛+1(𝑡)√
2

) (641)

Next, we solve the evolution equation for the expansion coefficients as an initial value problem with

𝑐𝑛(0) =
⎧{
⎨{⎩

1 𝑛 = 𝑛(0)
𝐴

0 𝑛 ≠ 𝑛(0)
𝐴

(642)

The solution for large time has an associated probability distribution that is Gaussian according to

|𝑐𝑛(𝜏)|2 = 1
√2𝜋𝜎2𝑛𝐴

(𝜏)
exp{−(𝑛 − 𝑛(0)

𝐴 )2

2𝜎2𝑛𝐴
(𝜏) } (643)

with

𝜎𝑛𝐴
(𝑇 ) = 1

2𝑛𝑗 Γ𝐴𝜏 (644)

For the associated matrix element that appears in the reduction of the Golden Rule rate estimate in Eq. 619
earlier in this section we can then write

∣⟨𝑛′
𝐴, 𝑛𝑂, 𝑛𝑃 ∣𝑒−𝑖�̂�𝑓𝑟𝑒𝑒𝜏/ℏ∣𝑛𝐴, 𝑛𝑂, 𝑛𝑃 ⟩

𝑜𝑠𝑐
∣
2

≈ 1
√2𝜋𝜎2𝑛𝐴

(𝜏)
exp{−(𝑛′

𝐴 − 𝑛𝐴)2

2𝜎2𝑛𝐴
(𝜏) } (645)

This expression effectively represents the phonon distribution and it enters into the simplified transfer rate
expression (Eq. 234) in section S5.11.
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S6.25 Energy exchange rates between Pd and oscillator modes

Of interest in sections S5.11 and S6.24 is the question of how fast energy exchange occurs with the different
oscillator modes in the lattice. We have focused on phonon (acoustic and optical) and plasmon modes in this
document. Characteristics of these oscillators result in different behaviors with respect to energy exchange.
For example, the acoustic phonon lifetime is long, making it much easier in practice for the acoustic phonons
to be driven so that there is substantial energy in the mode. On the other hand, the energy associated with a
single optical phonon or plasmon quantum is much larger. In this section we derive rates of energy exchange
between Pd and highly excited uniform modes of different kinds.

Acoustic phonon mode

We can define a coherent exchange rate for acoustic phonons associated with a single transition:

Γ𝐴(𝑗) = 2
ℏ|⟨Pd∗(𝑗)|a ⋅ 𝑐P(𝑗)|Pd⟩𝐴|√𝑁𝑃𝑑𝑗

(646)

assuming a minimal cooperative (Dicke) factor.

Γ𝐴(𝑗) ≈ 2
ℏ|e(𝐴)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|𝑐√⟨|𝑃 (𝑗)|2⟩𝐴√𝑁𝑃𝑑𝑗

≈ 2
ℏ|e(𝐴)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|√𝑀𝑗𝑐2𝑃 (𝐴)
𝐷 𝜏𝐴√𝑁𝑃𝑑𝑗

𝑁 (647)

This evaluates numerically to

Γ𝐴(𝑗) ≈ 6.21 × 1025 𝑂𝑗 |e(𝐴)
𝑗 |√ 𝑃 (𝐴)

𝐷
1 watt (1 MHz

𝑓𝐴
)

3/4
√𝑁𝑃𝑑𝑗

𝑁 s−1 (648)

We see that the associated energy exchange rate can be very fast.

The associated energy exchange rate is

ℏ𝜔𝐴Γ𝐴(𝑗) ≈ 2𝜔𝐴|e(𝐴)
𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|𝑐√⟨|𝑃 (𝑗)|2⟩𝐴√𝑁𝑃𝑑𝑗

≈ 2𝜔𝐴|e(𝐴)
𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|√𝑀𝑗𝑐2𝑃 (𝐴)

𝐷 𝜏𝐴√𝑁𝑃𝑑𝑗

𝑁 (649)

We can develop a numerical estimate for this of

ℏ𝜔𝐴Γ𝐴(𝑗) ≈ 0.0073 𝑂𝑗 |e(𝐴)
𝑗 |√ 𝑃 (𝐴)

𝐷
1 watt ( 𝑓𝐴

1 MHz)
1/4

√𝑁𝑃𝑑𝑗
𝑁 watts (650)

Given that the rate in Eq. 648 is so fast, there is the potential for considerable energy exchange from acoustic
phonons.
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Optical phonon mode

We can use a similar approach to develop an estimate in the case of optical phonon exchange; for the
excitation transfer rate we obtain

Γ𝑂(𝑗) ≈ 6.2 × 1019 𝑂𝑗 |e(𝑂)
𝑗 |√ 𝑃 (𝑂)

𝐷
1 watt (10 THz

𝑓𝑂
)

3/4
√𝑁𝑃𝑑𝑗

𝑁 s−1 (651)

For the energy exchange rate we have

ℏ𝜔𝑂Γ𝑂(𝑗) ≈ 0.41 𝑂𝑗 |e(𝑂)
𝑗 |√ 𝑃 (𝑂)

𝐷
1 watt ( 𝑓𝑂

10 THz)
1/4

√𝑁𝑃𝑑𝑗
𝑁 watts (652)

The rate of exchange is much slower per unit dissipated power than what we found for the acoustic phonons,
but since the quantum is so much larger, there can be a comparable if not larger rate for energy exchange.

Plasmon mode

In the case of plasmon exchange, we can write

Γ𝑃 (𝑗) ≈ 2
ℏ|e(𝑃)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|𝑐√⟨|𝑃 (𝑗)|2⟩𝑃 √𝑁𝑃𝑑𝑗

≈ 2
ℏ|e(𝑃)

𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|𝑍𝑗√𝑚𝑒𝑐2𝑃 (𝑃)
𝐷 𝜏𝑃 √𝑁𝑃𝑑𝑗

𝑁𝑒
(653)

This can be evaluated to give

Γ𝑃 (𝑗) ≈ 2.05 × 1017 𝑂𝑗 |e(𝑃)
𝑗 |√ 𝑃 (𝑃)

𝐷
1 watt

√𝑁𝑃𝑑𝑗
𝑁𝑒

s−1 (654)

The associated rate for energy exchange is

ℏ𝜔𝑃 Γ𝑃 (𝑗) ≈ 2𝜔𝑃 |e(𝑃)
𝑗 ||⟨Pd∗(𝑗)|𝑎𝑧|Pd⟩|𝑐√⟨|𝑃 (𝑗)|2⟩𝑃 √𝑁𝑃𝑑𝑗

≈ 0.156 𝑂𝑗 |e(𝑃)
𝑗 |√ 𝑃 (𝑃)

𝐷
1 watt ( ℏ𝜔𝑃

4.75 eV) √𝑁𝑃𝑑𝑗
𝑁𝑒

watts (655)

All of these energy exchange rates can be quite fast in connection with the model under discussion if uniform
modes are driven efficiently at the Watt level.
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S6.26 Analytic approximations for excitation transfer from D2 to multiple re-
ceiver states with oscillator energy exchange

Section S5.11 presented a model for describing excitation transfer from fusion transitions to multiple receiver
states under conditions where energy exchange between nuclei and lattice oscillators can take place. The
model was rationalized by the considerations laid out on section S6.24.

At the center of the resulting transfer rate expressions are estimates for the generalized nuclear density of
states ̃𝜌𝑛 (as discussed in section S6.19) and Gaussian probability distributions for the energy exchange
between nuclear states and lattice oscillators such as acoustic phonons.

Here we present analytic approximations for these expressions. At the end of the section, we also considering
some key scaling laws.

Recall the transfer rate expression from Eq. S5.11:

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = (Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝑓𝜖𝐴

)(𝐸)

= 2𝜋
ℏ |Δ𝒰|2( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴

)(𝐸)

= 2𝜋
ℏ |Δ𝒰|2 ∫

∞

−∞
̃𝜌𝑁(𝐸 − 𝜖𝐴)𝑓𝜖𝐴

(𝜖𝐴, 𝜏)𝑑𝜖 (656)

Fitting the generalized nuclear density of states

We have developed an empirical model according to

̃𝜌𝑛(𝐸) = 𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)𝐸 (657)

with

ln𝛼(𝐸𝐴) = − 15.4589 − 0.00238164 ln(𝐸𝐴
1 J) − 0.00207085 { ln(𝐸𝐴

1 J)}
2

(658)

with 𝛼(𝐸𝐴) in eV−1.

and

(𝛽(𝐸𝐴))
−1

= 0.0383705

( 𝐸𝐴
1 J)

1/3
− (3.8901 × 10−6)

1/3 + 1.00497 MeV (659)

The fit for 𝛼(𝐸𝐴) is shown in figure S71, and for 𝛽−1 is shown in Figure S72. When the acoustic mode energy
𝐸𝐴 is less than 3.8901 𝜇J in this model, the excitation transfer rate is not increased by energy exchange
from the highly-excited acoustic phonon mode.
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Figure S71: Results for 𝛼 (blue) and the associated fit (red).
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Figure S72: Results for 𝛽−1 (blue) and the associated fit (red).

Convolution

̃𝜌𝑛 represents the first part of the convolution in S5.11. For the second part, we take

𝑓𝜖𝐴
(𝜖) = 1√

2𝜋𝜎𝐴
𝑒−𝜖2/2𝜎2

𝐴 (660)

For the convolution we can write

( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴
)(𝐸) = ∫

∞

−∞
𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)(𝐸−𝜖) 1√

2𝜋𝜎𝐴
𝑒−𝜖2/2𝜎2

𝐴𝑑𝜖

= 𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)𝐸𝑒𝛽2(𝐸𝐴)𝜎2
𝐴/2

= ̃𝜌𝑛(𝐸)𝑒𝛽2(𝐸𝐴)𝜎2
𝐴/2 (661)
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Average energy exchange with the phonons

The mean energy gain of the acoustic mode is

𝜖 =
∫∞
−∞ 𝜖𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)(𝐸−𝜖) 1√

2𝜋𝜎𝐴
𝑒−𝜖2/2𝜎2

𝐴𝑑𝜖
∫∞
−∞ 𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)(𝐸−𝜖) 1√

2𝜋𝜎𝐴
𝑒−𝜖2/2𝜎2

𝐴𝑑𝜖

= − 𝛽(𝐸𝐴)𝜎2
𝐴 (662)

where we used Mathematica to evaluate the integrals.

Note that 𝐸 in the formula above is Δ𝑀𝑐2. The mean energy associated with the acoustic phonon mode is
relative to 𝑛𝐴ℏ𝜔𝐴. Since it is negative, we know that energy is being given to the nuclei.

Rough estimate for the number of transitions participating

The total energy available to the nuclei for Pd∗/Pd excitation in this model is

Δ𝑀𝑐2 − 𝜖 = Δ𝑀𝑐2 + 𝛽(𝐸𝐴)𝜎2
𝐴 (663)

We can use this to develop an initial estimate 𝑛𝑗. We get

𝑛𝑗 ≈ Δ𝑀𝑐2 − 𝜖
𝛿𝐸 = Δ𝑀𝑐2 + 𝛽(𝐸𝐴)𝜎2

𝐴
𝛿𝐸 (664)

where

𝛿𝐸 = 6.75 MeV (665)

Improved estimate for the number of transitions participating

It will be useful to improve this estimate. To understand why there should be a correction, recall the
expansion of the generalized nuclear density of states in the absence of energy exchange in terms of Gaussians

̃𝜌𝑛(𝐸) = ∑
𝑚

𝐴𝑚
1

√2𝜋𝜎2𝑚
𝑒−(𝐸−𝜇𝑚)2/2𝜎2

𝑚 (666)

For the convolution we can write

( ̃𝜌𝑛 ∗ 𝑓𝐴)(𝐸)

= ∑
𝑚

𝐴𝑚 ∫
∞

−∞

1
√2𝜋𝜎2𝑚

𝑒−(𝐸−𝜇𝑚−𝜖)2/2𝜎2
𝑚

1√
2𝜋𝜎𝐴

𝑒−𝜖2/2𝜎2
𝐴𝑑𝜖

= ∑
𝑚

𝐴𝑚 ∫
∞

−∞

1
√2𝜋𝜎2

𝐴𝑁

𝑒−(𝐸−𝜇𝑚)2/2𝜎2
𝐴𝑁 (667)
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where

𝜎2
𝐴𝑁 = 𝜎2

𝐴 + 𝜎2
𝑚 (668)

We can develop an expression for the average energy exchange with the acoustic phonons based on

𝜖 =
∫∞
−∞ 𝜖 ∑𝑚 𝐴𝑚

1
√2𝜋𝜎2𝑚

𝑒−(𝐸−𝜖−𝜇𝑚)2/2𝜎2
𝑚 1√

2𝜋𝜎𝐴
𝑒−𝜖2/2𝜎2

𝐴𝑑𝜖
∫∞
−∞ ∑𝑚 𝐴𝑚

1
√2𝜋𝜎2𝑚

𝑒−(𝐸−𝜖−𝜇𝑚)2/2𝜎2𝑚 1√
2𝜋𝜎𝐴

𝑒−𝜖2/2𝜎2
𝐴𝑑𝜖

=
∑𝑚 𝐴𝑚

𝜎2
𝐴

𝜎2
𝐴+𝜎2𝑚

(𝐸 − 𝜇𝑚)𝑒−(𝐸−𝜇𝑚)2/2𝜎2 1√
2𝜋𝜎2

∑𝑚 𝐴𝑚𝑒−(𝐸−𝜇𝑚)2/2𝜎2 1√
2𝜋𝜎2

(669)

In this expression we see a somewhat complicated expression that acts as the difference energy associated
with the acoustic phonons.

𝜖 → 𝜎2
𝐴

𝜎2
𝐴 + 𝜎2𝑚

(𝐸 − 𝜇𝑚) = 𝜎2
𝐴

𝜎2
𝐴 + 𝑚𝜎2

0
(𝐸 − 𝑚𝛿𝐸) (670)

where 𝛿𝐸 = 6.75 MeV and where 𝜎0 = 1.28 MeV. The summation over 𝑚 is an average over order, where 𝑚
is the number of transitions involved. We can get an estimate for the average number of transitions 𝑛𝑗 by
solving this as an algebraic relation for the means according to

𝜖 ≈ 𝜎2
𝐴

𝜎2
𝐴 + 𝑛𝑗𝜎2

0
(𝐸 − 𝑛𝑗𝛿𝐸) (671)

which assumes that contributions in the summation and integral are well localized around the maximum.
We can solve this and obtain

𝑛𝑗 ≈ 𝜎2
𝐴(Δ𝑀𝑐2 − 𝜖)
𝜎2

𝐴𝛿𝐸 + 𝜖𝜎2
0

= Δ𝑀𝑐2 + 𝛽𝜎2
𝐴

𝛿𝐸 − 𝛽𝜎2
0

(672)

Self-consistent model

We can put everything together for a self-consistent model. We need to solve

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(Δ𝑀𝑐2) = 2𝜋
ℏ |Δ𝒰|2𝛼(𝐸𝐴)𝑒𝛽(𝐸𝐴)Δ𝑀𝑐2𝑒𝛽2(𝐸𝐴)𝜎2

𝐴/2

𝜎𝐴 = 1
2(ℏ𝜔𝐴)𝑛𝑗Γ𝐴𝜏

𝑛𝑗 = Δ𝑀𝑐2 + 𝛽𝜎2
𝐴

𝛿𝐸 − 𝛽𝜎2
0

𝜏 = 1
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(673)
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Results

Self-consistent solutions have been obtained from this model. The excitation transfer rate from the fusion
transition is shown in Figure S73. We see that there is generally good agreement between the numerical
results and the analytic model.

The standard deviation for the numerically exact and the analytic model is shown in Figure S74, where there
is essentially no disagreement.

������

��	
 ��	� ��	� ��	 ��	� ���

�
�
�
�
�
�
���
�
��
�
�
�

���

���

����

Figure S73: Results for the excitation transfer rate from the fusion transition Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (blue) and the analytic model (red).
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Figure S74: Results for 𝜎𝐴 (blue) and the analytic model (red).

The energy exchange from the acoustic phonons are the same as shown in Figure S75. Once again we see
good agreement between the numerical calculation and the analytic model.

The mean number of transitions involved is shown in Figure S76. There is good agreement between the
numerical calculation and the analytic model.
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Figure S75: Results for the mean energy exchange from the acoustic phonons (blue) and the analytic model (red).
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Figure S76: Results for 𝑛𝑗 (blue) and the analytic model (red).

Scaling with the acoustic phonon energy

We have made use of the analytic model to see how the excitation transfer rate from the fusion transition at
start-up depends on the acoustic phonon frequency. For this study, we used the phonon frequencies

𝜔𝐴 = 2𝜋106, 2𝜋107, 2𝜋108 rad
sec (674)

while keeping all of the other model parameters the same (as in the calculations above). Results for the
excitation transfer rate are shown in Figure S77. We see that the excitation transfer rate is roughly linear
in the acoustic phonon energy. Results for the mean energy exchanged from the acoustic phonon modes
is shown in Figure S78. There is little difference in this model parameter for the three different phonon
frequencies, which is similar for 𝜎𝐴 and 𝑛𝑗 (the results are very close to those plotted above, so we have not
included figures).
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Figure S77: Results for Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 for 1 MHz (black), 10 MHz (blue), and 100 MHz phonons (red).
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Figure S78: Mean energy exchanged from acoustic phonons for 1 MHz (black), 10 MHz (blue), 100 MHz phonons (red).

Scaling with the screening energy 𝑈𝑒

We have argued that the Coulomb barrier hinders D2/4He transitions due to tunneling, and that the large
screening that has been seen in low energy ion beam experiments suggests that we might expect screening
to be important in our model. We have made use of the analytic model to study the effect of screening on
the excitation transfer rate, and on the other model parameters.

Results for the excitation transfer rate for different values of the screening energy including

𝑈𝑒 = 0, 50, 100, 150, 200, 250, 300, 350, 400 eV (675)

are shown in Figure S79.

We see that the excitation transfer rate decreases a minor amount as the screening increases, a result which
is counter intuitive – we would expect that excitation transfer from the fusion transition should be faster if
there is more screening. Note that the a ⋅ 𝑐P matrix element for the D2/4He transition increases by more
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Figure S79: Results for the excitation transfer rate for screening energies between 0 eV and 400 eV.

than 22 orders of magnitude between 𝑈𝑒 = 0 and 𝑈𝑒 = 400 eV, which the excitation transfer rate changes
by on the order of a factor of 2. This tells us that the excitation transfer rate has a very weak dependence
on the screening energy. From the analytic model described above, and also from the approximate solution
discussed below, the tunneling factor comes into the model through the square root of the logarithm of 𝑒−2𝐺.
This is consistent with the weak dependence observe in this parameter study.
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Figure S80: Mean energy exchanged from the acoustic phonons for screening energies between 0 eV and 400 eV.
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If we pursue the issue further, it becomes clear what the origin of this very counter intuitive result is. When
little screening occurs, more energy is needed from the acoustic phonons, leading to more Pd∗/Pd transitions
being involved, and this increases the number of transitions involved in exchanging energy with the acoustic
phonons, so that the rate at which acoustic phonons are exchanged is larger. In Figure S80 we show the
mean energy from the acoustic phonons as a function of the acoustic mode energy for the same values of the
screening energy. Results for 𝑛𝑗 for the different screening energies are shown in Figure S81.
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Figure S81: Mean number of Pd∗/Pd transitions 𝑛𝑗 for screening energies between 0 eV and 400 eV.

Based on this result, one might naively assume that the model somehow favors less screening and a more
hindered D2/4He matrix element since the excitation transfer rate from the fusion transition to many Pd∗/Pd
transitions is a little faster. After some thought, this is not the case. At start-up the Pd∗/Pd transitions
needs more energy from the acoustic mode when there is less screening, which makes it more difficult for
the system to get started and to evolve to faster excitation transfers. Then, if the system manages to evolve
past start up, it will require a much larger Dicke enhancement factor on the D2/4He transition in order to
make it into a regime where excess energy can be produced efficiently.

Approximate solution for the excitation transfer rate

It would be nice to have an analytic approximation for the excitation transfer rate including energy exchange
with the highly-excited acoustic phonon mode. The analytic version of the model allows us to develop such
an approximation.

We start by writing the excitation transfer rate including energy exchange in terms of the excitation transfer
rate with no energy exchange

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝛽2𝜎2

𝐴/2 (676)

where

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2𝜋

ℏ |Δ𝒰|2 ̃𝜌𝑁 (677)

We can use this to write 𝜎𝐴 in terms of Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 according to
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𝜎𝐴 =
√

2
𝛽

√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(678)

We recall that the standard deviation 𝜎𝐴 is related to the model parameters through

𝜎𝐴 = 1
2(ℏ𝜔𝐴)𝑛𝑗Γ𝐴𝜏 (679)

Recalling that 𝜏 = 1/Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, this leads to the constraint

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1
𝜏 =

1
2 (ℏ𝜔𝐴)𝑛𝑗Γ𝐴

√
2

𝛽 √ln Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(680)

It will be useful to define a new parameter 𝜅 according to

𝜅 =
√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(681)

which we can use to write

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =
1
2 (ℏ𝜔𝐴)𝑛𝑗Γ𝐴√

2
𝛽 𝜅

(682)

For the average number of Pd∗/Pd transitions we can write

𝑛𝑗 = Δ𝑀𝑐2

𝛿𝐸 − 𝛽𝜎2
0

+ 𝛽
𝛿𝐸 − 𝛽𝜎2

0

2
𝛽2 𝜅2 (683)

We can use this to write the analytic model according to

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ𝐴
2
√

2
ℏ𝜔𝐴

(𝛿𝐸 − 𝛽𝜎2
0)(𝛽Δ𝑀𝑐2

𝜅 + 2𝜅)

𝜅 =
√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(684)

An analytic self-consistent solution does not seem to be possible. However, it is possible to develop an
iteration scheme based on

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[𝑛] = Γ𝐴
2
√

2
ℏ𝜔𝐴

(𝛿𝐸 − 𝛽𝜎2
0)(𝛽Δ𝑀𝑐2

𝜅[𝑛] + 2𝜅[𝑛])

𝜅[𝑛 + 1] =
√√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[𝑛]

Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(685)

To start the iterations we might approximate
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Γ[0] = 109 s−1 (686)

The first-order approximation for the rate that results is

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1
2
√

2
𝛽(ℏ𝜔𝐴)Γ𝐴

1
(𝛿𝐸 − 𝛽𝜎2

0)(Δ𝑀𝑐2
√√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[0]
Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

−1

+ 2
𝛽

√√√
⎷

ln
Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[0]
Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
) (687)

We recall that the results of the Gaussian fits for the 120Sn data resulted in

𝛿𝐸 = 6.75 MeV 𝜎0 = 1.28 MeV (688)

A comparison of this lowest-order analytic approximation with the analytic result for the excitation transfer
rate is shown in Figure S82. The model parameters for this calculation are

|Δ𝒰| = ℏ
2 5.48 × 103√𝐸𝐴

1 J
√𝑁𝐷2

𝑁 eV
𝑁𝐷2

𝑁 = 0.25 × 1
9 (689)
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Figure S82: Results for Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 from the analytic model (blue), and from the lowest order approximation (red).

We see that the lowest-order approximation works quite well. From the lowest-order approximation we see
that the excitation transfer rate is roughly linear in ℏ𝜔𝐴, which is understandable in that if the phonon
energy quantum is larger then it requires fewer phonons to be exchanged for a given 𝜖𝐴, which means that
it takes less time for the phonons to be exchanged, which means that the excitation transfer rate is faster.

We see that the excitation transfer rate is roughly proportional to the acoustic mode phonon exchange rate
Γ𝐴, since it takes less time to transfer the large number of phonons if this transfer rate is faster. Since Γ𝐴
is proportional to the square root of the acoustic mode energy 𝐸𝐴, the excitation transfer rate is roughly
proportional to the square root of 𝐸𝐴. The dependence on the number of D2 molecules is weak, since
Γ(0)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is inside of a logarithm which is inside of a square root. Since Γ(0)
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is proportional to 𝑒−2𝐺,

the Gamow factor comes into the excitation transfer rate as 𝐺 (and not through an exponential). This is a
consequence of the very large generalized density of states that can be reached if more energy is transferred
from the acoustic phonon mode.
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S6.27 Optical phonon and plasmon exchange

The generalized excitation transfer rate including optical phonon and plasmon exchange can be written as

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸) = 2𝜋
ℏ |Δ𝒰|2( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴

∗ 𝑓𝜖𝑂
∗ 𝑓𝜖𝑃

)(𝐸) (690)

The use of the generalized excitation transfer rate is convenient here in connection with the convolutions,
but ultimately we are interested in the rate evaluated at the fusion energy

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(Δ𝑀𝑐2) (691)

The simple quantum diffusion model that we used for acoustic phonon exchange is appropriate with the
amount of energy exchange is much less than the total energy in the mode. This may not be the case for
optical phonons or plasmons, which means that a more complicated distribution would be needed. Since the
plasmon lifetime is so short (on the order of 1 fs), and since the associated power level is high

Δ𝑀𝑐2

𝜏𝑃
≈ 23.85 MeV

1 fs = 3821 watts (692)

it will require a high-power system with where the plasmons are driven efficiently in order for there to
be sufficient energy in the uniform plasmon mode to exchange with the fusion and Pd system to make a
difference. The most promising approach would be in a transient experiment driven by a high-power short
laser pulse tuned to the plasmon energy.

We would expect that under less extreme circumstances we would be able to neglect energy exchange with
plasmons and make use of

2𝜋
ℏ |Δ𝒰|2( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴

∗ 𝑓𝜖𝑂
∗ 𝑓𝜖𝑃

)(𝐸) → 2𝜋
ℏ |Δ𝒰|2( ̃𝜌𝑁 ∗ 𝑓𝜖𝐴

∗ 𝑓𝜖𝑂
)(𝐸) (693)

An analogous argument could be made in the case of optical phonons, where the optical phonon lifetime can
be on the order of 1 ps. The dissipated power that corresponds to a highly-excited optical phonon mode
with and energy of Δ𝑀𝑐2 would be a few watts. In general it is not easy to arrange for significant energy in
a uniform optical phonon mode. It can be done using a THz laser driving the surface of a thin film, or taking
advantage of the beat frequency between two optical lasers, where the drive or beat frequency is tuned to
an optical phonon mode at the Γ-point.
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S6.28 Average oscillator energy exchange during excitation transfer

The self-consistent solution to the excitation transfer rate (Eq. 234) was calculated in section S5.12. We
reproduce the equation and the corresponding figure (Figure S38, here: Figure S83) for convenience:

Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(Δ𝑀𝑐2) = 2𝜋
ℏ |Δ𝒰|2 ∫

∞

−∞
̃𝜌𝑁(Δ𝑀𝑐2 − 𝜖)𝑓𝜖𝐴

(𝜖𝐴, 𝜏)𝑑𝜖 (694)

Figure S83: Excitation transfer rate as a function of 𝐸𝐴.

The rate above allows us to study the characteristics of the phonon energy distribution defined in Eq 226.
Specifically, the spread in phonon energy (measured by the standard deviation 𝜎𝜖𝐴

) and the average energy
exchanged (see Eq. S6.26)

In Figure S84 we show the standard deviation 𝜎𝜖𝐴
in MeV associated with acoustic phonon exchange. We

see that at all values of 𝐸𝐴 shown the standard deviation is substantial. Substantial energy exchange with
the acoustic phonons is theefore required in order for excitation transfer from the fusion transition to occur,
even when there is significant energy in the acoustic mode.

In Figure S85 we show the mean energy in MeV transferred from the acoustic phonons to the nuclear
transition as a function of 𝐸𝐴. We see that substantial energy exchange is needed for excitation transfer
from the fusion transition, with on the order of 1000 MeV at the lowest 𝐸𝐴 value (10 𝜇J) to about 77 MeV
for 𝐸𝐴 near 1 J.

From this result we can gain some intuition about how the model works. When the energy in the acoustic
mode 𝐸𝐴 is low, then the excitation transfer rate is very slow if only the fusion energy Δ𝑀𝑐2 were available
to promote Pd∗/Pd transitions. But if the excitation transfer rate is slow, there is more time for energy
exchange with the acoustic phonon mode. With energy from the acoustic mode, the excitation transfer rate
can be faster. In this model, the rate near 𝐸𝐴 = 10 𝜇J is sufficiently slow that there is time for on the order
of 1000 MeV to be transferred.
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Figure S84: Standard deviation 𝜎𝜖𝐴 as a function of 𝐸𝐴.
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Figure S85: Mean energy transferred from the acoustic phonons 𝜖𝐴 as a function of 𝐸𝐴.
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S6.29 Dicke enhancement with excitation transfer to multiple receiver states

According to the discussion above, the system can only start up by taking considerable energy from the
acoustic vibrations. If sufficient energy can be provided by the uniform acoustic phonon mode to sustain
many such transitions, and if the rate is sufficiently high to exceed the molecular D2 decoherence rate (which
we have estimated might be as low as 109 s−1 in monovacancies where available sites to hop to are filled),
then it is possible for the Dicke factor associated with the D2/4He fusion transition to increase. In order to
show results under these conditions, we make use of 𝑁 (𝐷𝑖𝑐𝑘𝑒)

4𝐻𝑒 for the number of 4He atoms associated with
the Dicke state of the D2/4He fusion transition according to

⟨𝑆, 𝑀 + 1∣
̂𝑆+

ℏ ∣𝑆, 𝑀⟩ = √(𝑆 + 𝑀 + 1)(𝑆 − 𝑀) = √(𝑁 (𝐷𝑖𝑐𝑘𝑒)
𝐷2

+ 1)𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 (695)

where

𝑁 (𝐷𝑖𝑐𝑘𝑒)
𝐷2 = 𝑆 + 𝑀

𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 = 𝑆 − 𝑀 (696)

This factor comes into the model in connection with |Δ𝒰|, which after start-up (still assuming 𝑈𝑒 = 350 eV)
would become

2
ℏ|Δ𝒰| → 5.48 × 103√𝑁 (𝐷𝑖𝑐𝑘𝑒)

4𝐻𝑒 √𝐸𝐴
1 J

√𝑁 (𝐷𝑖𝑐𝑘𝑒)
𝐷2
𝑁 s−1 (697)

For this discussion we assume that

𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 ≪ 𝑁𝐷2

(698)

so that

𝑁 (𝐷𝑖𝑐𝑘𝑒)
𝐷2

≈ 𝑁𝐷2
(699)

As mentioned above, we have not included Dicke enhancement factors for the Pd∗/Pd transitions in the model.
We might expect a baseline level of Pd∗ admixture due to the polarization of the Pd∗/Pd transitions by the
highly-excited acoustic phonon mode, unconnected with the excitation transfer from the fusion transition.
Because of this, additional excitation of the Pd∗/Pd transitions will result in Dicke enhancement factors
contributing even with only a few transitions participating at start-up. If the energy exchange with the
oscillators is significant, then the number of Pd∗/Pd transitions promoted in the excitation transfer process
can be on the order of 50-100, which means that there will be many transitions that are multiply excited
which will come with Dicke enhancement factors. After starting up, if the system has transferred some
excitation to the Pd∗/Pd transitions, then there can be residual excitation which would lead to additional
Dicke enhancement factors. Because of the complications involved, we have chosen to carry out exploratory
modeling neglecting all Pd∗/Pd Dicke enhancement above the ground states, in order to begin understanding
how the model works and to obtain “worst case” excitation transfer rates.
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Excitation transfer rate with Dicke enhancement of the D2/4He fusion transition

Self-consistent results for the excitation transfer rate including the Dicke enhancement factor for the D2/4He
transition from Equation (234), with the same model parameters as above, are shown in Figure S86 as a
function of 𝐸𝐴 and 𝑁 (𝐷𝑖𝑐𝑘𝑒)

4𝐻𝑒 .
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Figure S86: Excitation transfer rate Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 in s−1 as a function of 𝐸𝐴 and 𝑁(𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 .

We see that in this model the excitation transfer rate is almost independent of the number of 4He atoms
which are part of the Dicke state over many orders of magnitude. In this regime, excitation transfers occur
only because substantial energy is coming from the acoustic phonons, which results in a limitation on the
associated rate. When the Dicke enhancement factor gets sufficiently large, then the nuclear system no
longer requires energy input from the acoustic phonons, and the excitation transfer rate increases with the
Dicke enhancement factor. This is seen to occur in this model at 𝑁4𝐻𝑒 above about 1011 at 𝐸𝐴 = 10 mJ in
Figure S86, and at higher 𝑁4𝐻𝑒 at lower energy.

We see that quite high excitation transfer rates from the fusion transition are predicted at large 𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒

values. As more excitation transfer from the fusion transition occurs, the Dicke factor increases, and the rate
increases. This effect would be enhanced further if Dicke factors for the Pd∗/Pd transition were included.
This kind of “runaway” effect is a basic feature of the model, and would naturally be associated with an
optimized “large” experiment. In this mode of operation, we would expect the supply of molecular D2 to be
depleted, in part from being used, and in part from being lost from the PdD𝑥 as the sample heats.

There have been a some claims of an excess heat runaway effect observed in certain metal-hydrogen exper-
iments. We surmise that this effect is connected with operation in the unstable regime at large 𝑁 (𝐷𝑖𝑐𝑘𝑒)

4𝐻𝑒
as predicted in this kind of model. Clearly, if the principles presented here are harnessed in future energy
technologies (see S5.16), operating in a stable regime rather than a runaway regime is important.

Finally, in the calculation above, the focus was on the impact of the Dicke factor for the fusion transition
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Figure S87: Acoustic phonon energy exchanged as a function of 𝐸𝐴 and 𝑁𝐻𝑒.

on the donor side, neglecting Dicke factors associated with the Pd∗/Pd transitions on the receiver side.
The results suggest that a (unrealistically) large Dicke enhancement of the fusion transition is required for
runaway to occur. In a more complete calculation, we expect contributions to the transfer rate due to Dicke
enhancement from both the fusion transition and Pd∗/Pd transitions, as well as contributions from many
additional Pd∗/Pd transitions with lower 𝑂𝑃𝑑 values. Consequently, the threshold to cross into the runaway
regime is predicted to be lower in such a model (i.e., occurring already with more modest Dicke enhancement
of the fusion transition). A rough scaling argument suggests that with this model, the runaway regime is
accessible at a transfer rate Γ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 corresponding to on the order of 100 watts for 𝐸𝐴 = 1 J. These are
aspects that need to be taken into account in the future design of experiments and, possibly, technology
based on these principles.

Energy exchange with Dicke enhancement of the D2/4He fusion transition

The energy exchanged with the acoustic phonons as a function of 𝐸𝐴 and 𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 is shown in Figure S87.

The result from Figure S85 at 𝑁 (𝐷𝑖𝑐𝑘𝑒)
4𝐻𝑒 = 1 is the same as at the bottom if this figure, with the exchanged

energy approaching 1000 MeV in the lower left corner. We see that as the Dicke factor of the D2/4He fusion
transition (as represented here through 𝑁 (𝐷𝑖𝑐𝑘𝑒)

4𝐻𝑒 ) increases, the energy exchanged from the acoustic phonon
mode decreases. In this model a large Dicke enhancement is required in order for the energy exchange to
be suppressed by the fast excitation transfer rate without energy exchange, an effect that results from the
excitation transfer being completed before there is time for much energy exchange to occur.
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Internal coefficient of performance

Under conditions where a substantial amount of energy from vibrations is required for excitation transfer to
occur, there can be net energy gain, but the associated internal coefficient of performance

CoP𝑖𝑛𝑡 = Δ𝑀𝑐2 + 𝜖𝐴
𝜖𝐴

(700)

will be poor. Once the Dicke enhanced excitation transfer rate without energy exchange becomes sufficiently
fast, then the internal coefficient of performance can be high. This regime is of interest for efficient energy
generation.
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S6.30 Excitation transfer from the HD/3He fusion transition

The large majority of this document is focused on deuterium pairs as donor systems in nuclear excitation
transfer dynamics via the D2 to 4He transition that releases 23.85 MeV of nuclear binding energy. However,
the arguments developed can be readily transferred to other materials. On the donor systems side, an obvious
candidate is the HD to 3He transition that releases 5.49 MeV of nuclear binding energy. Peculiarities of this
transition will be briefly discussed in this section. For a calculation of the HD to 3He matrix element with
respect to the relativistic coupling discussed in section S6.7, see section S6.10.

In the literature, anomalous excess heat production has been particularly associated with light water and
nickel systems. This provides motivation to speculate about the possibility of excitation transfer from the
HD/3He fusion transition to excited Ni∗ states, by analogy with the mechanisms discussed in this document.
Note that when using light water in an experiment, deuterium is still present, at a natural abundance ratio
of roughly 1 to 6500 D to H atoms.

Molecular HD is conjectured to form in different lattices where defects provide for low enough electron
density. In the case of Pd, we have been interested in the possibility of monovacancy formation in PdD𝑥, as
the removal energy of Pd is reduced roughly in proportion to the occupation of nearby O sites with H or
D; the situation is similar in NiH𝑥, but there is a larger reduction of the removal energy. Pd attracted our
attention in connection with sigma-bonded di-hydrogen complexes, as H2 bonds with atomic Pd resulting
in Pd(H2), where the atom bonds to the molecule and not individually to atoms in the ground state. A
qualitatively similar effect occurs for nickel, where there is a low-lying Ni(H2) complex [178]. This suggests
that it may be possible to arrange for substantial molecular HD occupation near Ni atoms in monovacancies
in a dedicated experiment.

Note that the HD system exhibits a lower reduced mass than the D2 system, which means that tunneling
through the Coulomb barrier would be orders of magnitude faster. Consequently, the Gamow factor for
molecular HD is significantly smaller than for molecular D2, which is encouraging for excitation transfer
from the HD/3He fusion transition. Also encouraging is that we would expect a strong screening effect for
molecular HD, similar to the screening effect seen for molecular D2 based on deuteron-deuteron ion beam
collision experiments. A screening effect has been reported for deuteron-deuteron collisions in Ni [39].

We have commented above on the destructive interference associated with excitation transfer, and the need
for a mechanism to eliminate some of the destructive interference to accelerate the rate. For the D2/4He
transition, we noted that loss due to fusion to the 3+1 channel can remove some of the destructive interference,
and there is a bigger effect in the D2/3+1/4He pathway due to the fast tunnel decay of the 3+1 state. There
is no equivalent intermediate state with a fast tunneling decay in the HD/3He transition, which means that
this transition will not be as effective in removing the destructive interference. There is a radiative decay
mechanism that comes into the model the same way as fusion loss comes into the model for the D2/4He
transition. Since the radiative decay rate is orders of magnitude slower, the associated 1 − 𝜂| factor due
to the this loss is a comparable number of orders of magnitude slower. If there were no other mechanisms
available to eliminate the destructive interference, then we would conclude that the HD/3He fusion transition
would not work very well (in comparison to the D2/4He transition and in comparison to the D2/3+1/4He
pathway). We note that it is possible that fast loss associated with a Pd∗/Pd transition or Ni∗/Ni transition
could reduce the destructive interference, and accelerate excitation transfer.

Excitation transfer from the HD/3He fusion transition to many Ni∗/Ni transitions with energy input from
the highly-excited acoustic phonon mode should be able to work in much the same way as for excitation
transfer from the D2/4He transition. If fast coherent transitions can stabilize excited Pd∗ states in the PdD𝑥
system, then there seems to be no reason that a similar stabilization should not occur for the excited Ni∗
states. We would expect energy exchange from the Ni∗ states to uniform optical phonon modes and uniform
plasmon modes to be similar.
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